Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 474: 134705, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38805812

ABSTRACT

Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.

2.
Food Microbiol ; 121: 104510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637074

ABSTRACT

Mycotoxins, as secondary metabolites produced by fungi, have been the focus of researchers in various countries and are considered to be one of the major risk factors in agricultural products. There is an urgent need for a rapid, simple and high-performance method to detect residues of harmful mycotoxins in agricultural foods. We have developed a gold nanoparticle-based multiplexed immunochromatographic strip biosensor that can simultaneously detect fifteen mycotoxins in cereal samples. With this optimized procedure, five representative mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), tenuazonic acid (TEA) and alternariol (AOH) were detected in the range of 0.91-4.77, 0.04-0.56, 0.11-0.68, 0.12-1.02 and 0.09-0.75 ng/mL, respectively. The accuracy and stability of these measurements were demonstrated by analysis of spiked samples with recoveries of 91.8%-115.3% and coefficients of variation <8.7%. In addition, commercially available samples of real cereals were tested using the strips and showed good agreement with the results verified by LC-MS/MS. Therefore, Our assembled ICA strips can be used for the simultaneous detection of 5 mycotoxins and their analogs (15 mycotoxins in total) in grain samples, and the results were consistent between different types of cereal foods, this multiplexed immunochromatographic strip biosensor can be used as an effective tool for the primary screening of mycotoxin residues in agricultural products.


Subject(s)
Metal Nanoparticles , Mycotoxins , Mycotoxins/analysis , Gold/analysis , Gold/chemistry , Chromatography, Liquid , Food Contamination/analysis , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Tandem Mass Spectrometry , Edible Grain/microbiology
3.
Anal Chem ; 96(14): 5677-5685, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38533607

ABSTRACT

Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.


Subject(s)
Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species , Vanadium
4.
Proc Natl Acad Sci U S A ; 121(13): e2310469121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502692

ABSTRACT

The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Humans , Animals , Mice , SARS-CoV-2/genetics , Antibodies/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
Food Chem ; 444: 138599, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38310776

ABSTRACT

As a widely used fungicide in agriculture, bitertanol (BIT) significantly affects hormone regulation leading to imbalance of homeostasis in vivo, which makes it necessary to monitor BIT residues in foods. In this research, a novel hapten derivation scheme was designed by analyzing the chemical structure of BIT to prepare an anti-BIT monoclonal antibody with high affinity, specificity and sensitivity (half inhibitory concentration of 4.78 ng/mL). Subsequently, a visualized gold immunochromatographic assay (GICA) platform was established based on antigen-antibody specific recognition, with a limit of detection of 0.06 mg/kg and 0.18 mg/kg in cucumber and tomato, respectively. GICA has spiked recoveries of 84.3 %-114.1 %, determines results are not significantly different from those of LC-MS/MS, and the complex purification treatments can be reduced during the detection process. Therefore, the developed GICA is a reliable, rapid, and sensitive method for on-site rapid monitoring of BIT in foods.


Subject(s)
Biphenyl Compounds , Gold , Tandem Mass Spectrometry , Triazoles , Chromatography, Liquid , Immunoassay/methods , Chromatography, Affinity/methods , Limit of Detection
6.
Small Methods ; 8(3): e2301332, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997213

ABSTRACT

Chirality is a fundamental characteristic of living organisms and is commonly observed at the biomolecule, cellular, and tissue levels. Chiral nanomaterials play an irreplaceable role in nanomedicine and nanobiology because of their unique enantioselectivity with biological components. Here, research progress relating to chiral nanomaterials in the field of vaccines is reviewed, including antigen presenting systems, immune adjuvants, and cancer vaccines. First, the common synthesis methods are outlined for different types of chiral nanomaterials, as well as their chiral sources, optical properties, and potential biological applications. Then, the application of chiral nanomaterials are discussed in the field of vaccines with reference to the promotion of antigen presentation and activation of the immune system for tumor immunotherapy. Finally, the current obstacles and future research directions of chiral nanomaterials are revealed with regard to regulating the immune system.


Subject(s)
Cancer Vaccines , Nanostructures , Neoplasms , Cancer Vaccines/therapeutic use , Nanostructures/therapeutic use , Adjuvants, Immunologic/therapeutic use , Antigen Presentation , Antigens , Neoplasms/therapy
7.
Adv Mater ; 36(5): e2308469, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37766572

ABSTRACT

Excessive accumulation of reactive oxygen species (ROS) can lead to oxidative stress and oxidative damage, which is one of the important factors for aging and age-related diseases. Therefore, real-time monitoring and the moderate elimination of ROS is extremely important. In this study, a ROS-responsive circular dichroic (CD) at 553 nm and magnetic resonance imaging (MRI) dual-signals chiral manganese oxide (MnO2 ) nanoparticles (NPs) are designed and synthesized. Both the CD and MRI signals show excellent linear ranges for intracellular hydrogen peroxide (H2 O2 ) concentrations, with limits of detection (LOD) of 0.0027 nmol/106 cells and 0.016 nmol/106 cells, respectively. The lower LOD achieved with CD detection may be attributable to its higher anti-interference capability from the intracellular matrix. Importantly, ROS-induced cell aging is intervened by chiral MnO2 NPs via redox reactions with excessive intracellular ROS. In vivo experiments confirm that chiral MnO2 NPs effectively eliminate ROS in skin tissue, reduce oxidative stress levels, and alleviate skin aging. This approach provides a new strategy for the diagnosis and treatment of age-related diseases.


Subject(s)
Nanoparticles , Oxides , Reactive Oxygen Species , Manganese Compounds , Hydrogen Peroxide
8.
ACS Nano ; 18(1): 641-651, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38112427

ABSTRACT

Titanium dioxide (TiO2) has attracted significant attention in the fields of antibacterial activity and pollutant degradation due to its well-known photocatalytic properties. However, the application of TiO2 is significantly limited by its large band gap width, which only allows excitation by ultraviolet light below 400 nm. Here, we propose the use of surface chiral functionalization of TiO2 to tune its band gap width, thus enabling it to be excited by near-infrared-region light (NIR), resulting in the effective separation of electron-hole pairs. By controlling the solvent polarity and forming numerous weak interactions (such as hydrogen bonding) between chiral ligands and TiO2, we successfully prepared chiral TiO2 superparticles (SPs) that exhibited a broad circular dichroism (CD) absorption at 792 nm. Under circularly polarized light (CPL) at 808 nm, the chiral SPs induced the separation of electron-hole pairs in TiO2, thus generating hydroxyl and singlet oxygen radicals. Antibacterial tests under CPL in NIR showed that the chiral TiO2 SPs exhibited excellent antibacterial performance, with inhibition rates of 99.4% and 100% against Gram-positive and Gram-negative bacteria, respectively. Recycling-reuse experiments and biocompatibility evaluation of the material demonstrated that the chiral TiO2 SPs are stable and safe antibacterial materials, thus indicating the potential application of chiral TiO2 SPs in antibacterial aspects of medical implants.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Ultraviolet Rays , Titanium/pharmacology
9.
J Mater Chem B ; 12(3): 691-700, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38126510

ABSTRACT

Herein, four haptens of niacin (Vitamin B3, VB3) were designed, and after a series of experiments, it was concluded that hapten D had the best immune effect. To avoid false positives in the detection of real samples, a monoclonal antibody (mAb) against VB3 was prepared by a matrix effect-enhanced mAb screening method. The concentration of the inhibition rate reaching 50% (IC50) was 603.41 ng mL-1 and the limit of detection (LOD) using an indirect enzyme-linked immunosorbent assay (ic-ELISA) was 54.89 ng mL-1. A lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles was established to detect the concentration of VB3 in compound vitamin B tablets and infant formulas, with a visual LOD of 5 µg mL-1. Using a handheld reader, the quantitative LOD was calculated to be 0.60 µg mL-1. The contents of the compound vitamin B tablets and infant formulas were also verified by liquid chromatography. Therefore, the LFIA developed in this study can be applied to the specific identification and rapid detection of niacin in nutritional dietary supplements, thus meeting the market's demand for efficient niacin detection methods.


Subject(s)
Metal Nanoparticles , Niacin , Infant , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Antibodies, Monoclonal , Dietary Supplements , Vitamins
10.
Nat Aging ; 3(11): 1415-1429, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37946041

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid-ß accumulation in the brain and hyperphosphorylated tau aggregation, as well as neuroinflammation. The gut-brain axis has emerged as a therapeutic target in neurodegenerative diseases by modulating metabolic activity, neuroimmune functions and sensory neuronal signaling. Here we investigate interactions between orally ingested chiral Au nanoparticles and the gut microbiota in AD mice. Oral administration of chiral Au nanoparticles restored cognitive abilities and ameliorated amyloid-ß and hyperphosphorylated tau pathologies in AD mice via alterations in the gut microbiome composition and an increase in the gut metabolite, indole-3-acetic acid, which was lower in serum and cerebrospinal fluid of patients with AD compared with age-matched controls. Oral administration of indole-3-acetic acid was able to penetrate the blood-brain barrier and alleviated cognitive decline and pathology including neuroinflammation in AD mice. These findings provide a promising therapeutic target for the amelioration of neuroinflammation and treatment of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Metal Nanoparticles , Humans , Mice , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis , Neuroinflammatory Diseases , Gold , Metal Nanoparticles/therapeutic use , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism
11.
Angew Chem Int Ed Engl ; 62(43): e202311416, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37677113

ABSTRACT

Here, we report the synthesis of chiral selenium nanoparticles (NPs) using cysteine and the interfacial assembly strategy to generate a self-assembled nanomembrane on a large-scale with controllable morphology and handedness. The selenide (Se) NPs exhibited circular dichroism (CD) bands in the ultraviolet and visible region with a maximum intensity of 39.96 mdeg at 388 nm and optical anisotropy factors (g-factors) of up to 0.0013 while a self-assembled monolayer nanomembrane exhibited symmetrical CD approaching 72.8 mdeg at 391 nm and g-factors up to 0.0034. Analysis showed that a photocurrent of 20.97±1.55 nA was generated by the D-nanomembrane when irradiated under light while the L-nanomembrane generated a photocurrent of 20.58±1.36 nA. Owing to the asymmetric intensity of the photocurrent with respect to the handedness of the nanomembrane, an ultrasensitive recognition of enantioselective kynurenine (Kyn) was achieved by the ten-layer (10L) D-nanomembrane exhibiting a photocurrent for L-kynurenine (L-Kyn) that was 8.64-fold lower than that of D-Kyn, with a limit of detection (LOD) of 0.0074 nM for the L-Kyn, which was attributed to stronger affinity between L-Kyn and D-Se NPs. Noticeably, the chiral Se nanomembrane precisely distinguished L-Kyn in serum and cerebrospinal fluid samples from Alzheimer's disease patients and healthy subjects.

12.
Adv Mater ; 35(49): e2308198, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37721365

ABSTRACT

The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.


Subject(s)
Brain Neoplasms , Glioma , Male , Humans , Ferric Compounds , Contrast Media , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods
13.
Anal Methods ; 15(27): 3353-3361, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37401441

ABSTRACT

Due to its unique insecticidal and acaricidal mechanism of action, and ability to mix with most insecticides and fungicides, diafenthiuron (DIAF) is widely used in the cultivation of fruits and vegetables. However, this insecticide can cause unacceptable harm to organisms, making the detection of DIAF residues in fruits and vegetables crucial. In this study, a novel hapten based on the structure of DIAF was utilized to prepare a monoclonal antibody (mAb) with high specificity and sensitivity. The half maximum inhibitory concentration (IC50) of the anti-DIAF mAb was 20.96 µg kg-1 as determined by ic-ELISA and little cross-reactivity with other analogues. Next, a GNP-based lateral flow immunoassay (LFIA) was developed to detect DIAF in cabbages and apples. The optimized LFIA, for cabbage samples, showed a visual limit of detection (vLOD), cut-off value and calculated limit of detection (cLOD) of 0.1 mg kg-1, 10 mg kg-1 and 1.5 µg kg-1, respectively, and for apples 0.1 mg kg-1, 5 mg kg-1 and 3.4 µg kg-1, respectively. Recovery rates in cabbage and apples were 89.4-105.0% and 105.3-112.0%, with a coefficient of variation of 2.73-5.71% and 2.15-7.56%, respectively. These results indicated that the established LFIA based on our anti-DIAF mAb was a reliable method for in situ rapid detection of DIAF in cabbage and apple samples.


Subject(s)
Brassica , Insecticides , Malus , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Immunoassay/methods , Vegetables
14.
Food Chem ; 426: 136533, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37336101

ABSTRACT

In the study, we discovered zoxamide hapten (ZOX-hapten) by introducing a carboxyl extension chain, combined it with protein to make a complete antigen to immunize mice, and generated a monoclonal antibody (mAb) against ZOX. To identify ZOX residues in grape, tomato, and cucumber samples, we used our anti-ZOX mAb to develop a lateral flow immunoassay (LFIA) strip. In grape, tomato, and cucumber samples, the calculated detection limit of the LFIA strip in grape, tomato and cucumber samples was 3.44, 4.78 and 3.53 ng/g, respectively. Using the LFIA strip, the recovery rate from grape samples was 96.4-106.8%, and that from tomato samples was 98.4-107.5%, while the recovery from cucumber samples was 99.4-111.3%. These results showed that our LFIA strip could be expected to achieve rapid screening of ZOX residues in fruits and vegetables.


Subject(s)
Cucumis sativus , Metal Nanoparticles , Solanum lycopersicum , Vitis , Animals , Mice , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Immunoassay/methods , Antibodies, Monoclonal
15.
Adv Mater ; : e2208037, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528789

ABSTRACT

Reactive oxygen species (ROS) are involved in neurodegenerative diseases, cancer, and acute hepatitis, and quantification of ROS is critical for the early diagnosis of these diseases. In this work, a novel probe is developed, based on chiral molybdenum diselenide (MoSe2 ) nanoparticles (NPs) modified by the fluorescent molecule, cyanine 3 (Cy3). Chiral MoSe2 NPs show intensive circular dichroism (CD) signals at 390 and 550 nm, whereas the fluorescence of Cy3 at 560 nm is quenched by MoSe2 NPs. In the presence of ROS, the probe reacts with the ROS and then oxidates rapidly, resulting in decreased CD signals and the recovery of the fluorescence. Using this strategy, the limit of detection values of CD and fluorescent signals in living cells are 0.0093 nmol/106 cells and 0.024 nmol/106 cells, respectively. The high selectivity and sensitivity to ROS in complex biological environments is attributed to the Mo4+ and Se2- oxidation reactions on the surface of the NPs. Furthermore, chiral MoSe2 NPs are able to monitor the levels of ROS in vivo by the fluorescence. Collectively, this strategy offers a new approach for ROS detection and has the potential to inspire others to explore chiral nanomaterials as biosensors to investigate biological events.

16.
Chem Sci ; 13(35): 10281-10290, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36277618

ABSTRACT

The emergence of antibiotic resistance makes the therapeutic effect of traditional antibiotics far from satisfactory. Here, chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology are reported, and used in the fight against bacterial infection. Specifically, the dipeptide of d-/l-Cys-Phe (CF) caused the nano-bipyramids to form a spike shape with an optical anisotropy factor of 0.102 at 573 nm. The antibacterial effects showed that d-GBPs and l-GBPs could efficiently destroy bacteria with a death ratio of 98% and 70% in vitro. Also, both in vivo skin infection and sepsis models showed that the chiral GBPs could effectively promote wound healing and prevent sepsis in mice. Mechanistic studies showed that the binding affinity of d-GBPs (1.071 ± 0.023 × 108 M-1) was 12.39-fold higher than l-GBPs (8.664 ± 0.251 × 106 M-1) to protein A of Staphylococcus aureus, which caused further adsorption of d-GBPs onto the bacterial surface. Moreover, the physical destruction of the bacterial cell wall caused by the spike chiral GBPs, resulted in a stronger antibacterial effect for d-GBPs than l-GBPs. Furthermore, the excellent PTT of d-/l-GBPs further exacerbated the death of bacteria without any side-effect. Overall, chiral nano-bipyramids have opened a new avenue for improved antibacterial efficacy in the treatment of bacterial infections.

17.
Angew Chem Int Ed Engl ; 61(45): e202210370, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36123300

ABSTRACT

Here, chiral second near-infrared (NIR-II) emitting rare-earth doped silver selenide nanoparticles (R- or S-Ag2 Se:Nd/Yd/Er NPs) were fabricated, exhibiting circular dichroism peak at 850 nm and fluorescence peak at 1550 nm, with 145.7-fold enhanced intensity compared to the reported Ag2 Se NPs. Compared with S-Ag2 Se:Nd/Yd/Er NPs, imaging efficiency of R-Ag2 Se:Nd/Yd/Er NPs in living cells was significantly improved due to a higher cellular uptake rate and 927.7-fold higher affinity. Furthermore, R-Ag2 Se:Nd/Yd/Er NPs reached at the tumor 2-fold faster than S type of NPs in vivo. We discover that chirality leads to differences in the affinity between chiral Ag2 Se:Nd/Yd/Er NPs and cluster of differentiation 44 (CD44) onto the surface of murine mammary carcinoma cell to cause different in vivo imaging efficiency. These results reveal that chiral Ag2 Se:Nd/Yd/Er NPs have high photoluminescence intensity and high in vivo imaging efficiency reflecting wide applications in biomedical diagnosis.


Subject(s)
Metals, Rare Earth , Nanoparticles , Mice , Animals , Diagnostic Imaging , Fluorescence , Optical Imaging
18.
Adv Sci (Weinh) ; 9(29): e2202475, 2022 10.
Article in English | MEDLINE | ID: mdl-36008133

ABSTRACT

The differentiation of neural stem cells via nanomaterials has attracted attention and has become a potential tool. However, the chirality effect in neural stem cell differentiation has not been investigated. Here, this study shows that chiral nanoparticles (NPs) with strong chirality can efficiently accelerate the differentiation of mouse neural stem cells (NSCs) into neurons under near-infrared (NIR) light illumination. L-type NPs are 1.95 times greater than D-type NPs in promoting NSCs differentiation due to their 1.47-fold endocytosis efficiency. Whole gene expression map analysis reveals that circularly polarized light illumination and chiral NPs irradiation significantly upregulate Map2, Yap1, and Taz genes, resulting in mechanical force, cytoskeleton protein action, and accelerated NSCs differentiation. In vivo experiments show that successful differentiation can further alleviate symptoms in Alzheimer's disease mice. Moreover, the clearance of L-type NPs on amyloid and hyperphosphorylated p-tau protein reachs 68.24% and 66.43%, respectively, under the synergy of NIR irradiation. The findings suggest that strong chiral nanomaterials may have advantages in guiding cell development and can be used in biomedicine.


Subject(s)
Alzheimer Disease , Nanoparticles , Neural Stem Cells , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Animals , Cell Differentiation , Mice , Neural Stem Cells/metabolism , tau Proteins/metabolism
19.
ACS Nano ; 16(7): 11066-11075, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35776106

ABSTRACT

The realization of chiral magnetic effect by macroscopically manipulating quantum states of chiral matter under the magnetic field makes a future for information transmission, memory storage, magnetic cooling materials etc., while the microscopic tiny signal differences of at the interface electrons are laborious to be discerned. Here, chiromagnetic iron oxide (Fe3O4) nanofilms were successfully prepared by modulating the magnetic and electrical transition dipoles and combined with confined ion transport, enabling magnetic field-tunable ionic currents with markedly ∼7.91-fold higher for l-tartaric acid (TA)-modified Fe3O4 nanofilms than that by d-TA. The apparent amplification results from the charge redistribution at the ferromagnetic-organic interface under the influence of the chiral magnetic effect, resulting in a significant potential difference across the nanofilms that drive ion transport in the confined environment. This strategy, on the one hand, makes it possible to efficiently characterize the electronic microimbalance state in chiral substances induced by the magnetic field and, on the other hand realizes the discrimination and highly sensitive quantitative detection of chiral drug enantiomers, which give insights for the in-depth understanding of chiral magnetic effects and efficient enantiomeric recognition.

20.
Chem Sci ; 13(22): 6642-6654, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35756519

ABSTRACT

Parkinson's disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P- NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL-1 to 8.66 ± 1.79 ng mL-1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...