Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
BMC Med Genomics ; 17(1): 46, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303044

ABSTRACT

OBJECTIVE: To analyze the clinical phenotype and genetic characteristics of a female proband carrying a novel mutation in the DMD gene with non-random X-chromosome inactivation in a large pedigree with pseudohypertrophic muscular dystrophy. METHODS: Clinical information of the female proband, her monozygotic twin sister, and other family members were collected. Potential pathogenic variants were detected with Multiplex Ligation-dependent Probe Amplification (MLPA) and whole-exome sequencing (WES). Methylation-sensitive restriction enzyme (HhaI) was employed for X-chromosome inactivation analysis. RESULTS: The proband was a female over 5 years old, displayed clinical manifestations such as elevated creatine kinase (CK) levels and mild calf muscle hypertrophy. Her monozygotic twin sister exhibited normal CK levels and motor ability. Her uncle and cousin had a history of DMD. WES revealed that the proband carried a novel variant in the DMD (OMIM: 300,377) gene: NM_004006.3: c.3051_3053dup; NP_003997.2: p.Tyr1018*. In this pedigree, five out of six female members were carriers of this variant, while the cousin and uncle were hemizygous for this variant. X-chromosome inactivation analysis suggested non-random inactivation in the proband. CONCLUSION: The c.3051_3053dup (p.Tyr1018*) variant in the DMD gene is considered to be the pathogenic variant significantly associated with the clinical phenotype of the proband, her cousin, and her uncle within this family. Integrating genetic testing with clinical phenotype assessment can be a valuable tool for physicians in the diagnosis of progressive muscular dystrophies, such as Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD).


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Female , Child, Preschool , Muscular Dystrophy, Duchenne/genetics , Genetic Testing , Phenotype , Mutation , Chromosomes
2.
Se Pu ; 41(7): 545-553, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37387275

ABSTRACT

Covalent organic frameworks (COFs) are a type of crystalline porous polymers. It firstly prepared by thermodynamically controlled reversible polymerization to obtain chain units and connecting small organic molecular building units with a certain symmetry. These polymers are widely used in gas adsorption, catalysis, sensing, drug delivery, and many other fields. Solid-phase extraction (SPE) is a fast and simple sample pretreatment technology that can enrich analytes and improve the accuracy and sensitivity of analysis and detection; it is extensively employed in food safety detection, environmental pollutant analysis, and several other fields. How to improve the sensitivity, selectivity, and detection limit of the method during sample pretreatment have become a topic of great interest. COFs have recently been applied to sample pretreatment owing to their low skeleton density, large specific surface area, high porosity, good stability, facile design and modification, simple synthesis, and high selectivity. At present, COFs have also attracted extensive attention as new extraction materials in the field of SPE. These materials have been applied to the extraction and enrichment of diverse types of pollutants in food, environmental, and biological samples, such as heavy metal ions, polycyclic aromatic hydrocarbons, phenol, chlorophenol, chlorobenzene, polybrominated diphenyl ethers, estrogen, drug residues, pesticide residues, etc. COFs can be synthesized from different materials and exert different effects on different extracts. New types of COFs can also be synthesized via modification to achieve better extraction effects. In this work, the main types and synthesis methods of COFs are introduced, and the most important applications of COFs in the fields of food, environment and biology in recent years are highlighted. The development prospects of COFs in the field of SPE are also discussed.

3.
J Asian Nat Prod Res ; 25(4): 379-386, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35866233

ABSTRACT

Sixty-nine 4-propargyloxybenzene sulfonamide derivatives with different amino acids as amino substituent were synthesized and evaluated for their insecticidal activity against third-instar Mythimna separate. The bioassay results revealed that some derivatives bearing amino acid ester group performed good insecticidal activity against third-instar M.separata, such as the LC50 values of D18 and D19 were 4.28 and 2.96 mg/ml after 48 h, in particular, the LC50 of D16 was 2.38 mg/ml and the activity was improved by 14 times compared to celangulin V (34.48 mg/ml). The above results provided theoretical and experimental basis for the discovery of novel insecticidal active compounds.


Subject(s)
Insecticides , Moths , Animals , Amino Acids , Sulfonamides , Esters , Sulfanilamide , Larva , Structure-Activity Relationship , Molecular Structure
4.
J Orthop Surg Res ; 17(1): 557, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36544170

ABSTRACT

BACKGROUND: Osteosarcoma is highly malignant. The migration, invasion, and chemoresistance contribute to poor prognosis of osteosarcoma. Research reported that endogenous bornavirus-like nucleoprotein 3 pseudogene (EBLN3P) promotes the progression of osteosarcoma. METHODS: In this study, the expression of EBLN3P in osteosarcoma tissue with different methotrexate (MTX) treatment responses was measured. Osteosarcoma cell lines with MTX resistance were constructed, and bioinformatic analysis was performed to explore the potential involved targets and pathways. RESULTS: Higher EBLN3P was associated with MTX resistance. Downregulation of LncEBLN3P decreased the MTX resistance of osteosarcoma cells by sponging miR-200a-3p, an important microRNA that affects epithelial-mesenchymal transition (EMT). The decreased miR-200a-3p resulted in the upregulation of its target gene O-GlcNAc transferase (OGT), which in turn promoted the EMT process of osteosarcoma cells. Further analysis confirmed that the loss of OGT and over-expression of miR-200a-3p could partly abolish the MTX resistance induced by LncEBLN3P. CONCLUSION: LncEBLN3P is upregulated in osteosarcoma and increases the MTX resistance in osteosarcoma cells through downregulating miR-200a-3p, which in turn promoted the EMT process of osteosarcoma cells by increasing the OGT.


Subject(s)
Bone Neoplasms , Drug Resistance, Neoplasm , Methotrexate , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Humans , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Methotrexate/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/pathology , Pseudogenes , RNA, Long Noncoding/genetics , Drug Resistance, Neoplasm/genetics
5.
J Virol ; 96(20): e0131822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36173190

ABSTRACT

Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.


Subject(s)
COVID-19 , Herpesvirus 1, Suid , Pseudorabies , Mice , Humans , Animals , Herpesvirus 1, Suid/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Furin/metabolism , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Viral Proteins/metabolism , Antiviral Agents/metabolism , Mammals
6.
Viruses ; 14(3)2022 03 10.
Article in English | MEDLINE | ID: mdl-35336979

ABSTRACT

Despite many efforts and diverse approaches, developing an effective herpesvirus vaccine remains a great challenge. Traditional inactivated and live-attenuated vaccines always raise efficacy or safety concerns. This study used Pseudorabies virus (PRV), a swine herpes virus, as a model. We attempted to develop a live but replication-incompetent PRV by genetic code expansion (GCE) technology. Premature termination codon (PTC) harboring PRV was successfully rescued in the presence of orthogonal system MbpylRS/tRNAPyl pair and unnatural amino acids (UAA). However, UAA incorporating efficacy seemed extremely low in our engineered PRV PTC virus. Furthermore, we failed to establish a stable transgenic cell line containing orthogonal translation machinery for PTC virus replication, and we demonstrated that orthogonal tRNAPyl is a key limiting factor. This study is the first to demonstrate that orthogonal translation system-mediated amber codon suppression strategy could precisely control PRV-PTC engineered virus replication. To our knowledge, this is the first reported PTC herpesvirus generated by GCE technology. Our work provides a proof-of-concept for generating UAAs-controlled PRV-PTC virus, which can be used as a safe and effective vaccine.


Subject(s)
Herpesviridae , Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Amino Acids/genetics , Animals , Codon, Nonsense , Genetic Code , Herpesviridae/genetics , Herpesvirus 1, Suid/genetics , RNA, Transfer , Swine , Technology
7.
Front Microbiol ; 13: 835040, 2022.
Article in English | MEDLINE | ID: mdl-35237251

ABSTRACT

In recent years, Seneca Valley virus (SVV) as a newly identified pathogen of porcine vesicular disease spread quickly and has posed a potential threat to the swine industry in several countries resulting in economic losses. Considering the evolution of SVV, attention should be given to controlling SVV epidemics. So far there are no commercial vaccines or drugs available to combat SVV. Therefore, development of strategies for preventing and controlling SVV infection should be taken into account. In the current study, we evaluated whether the CRISPR-Cas13d system could be used as a powerful tool against SVV infection. Besides, selected crRNAs showed different capacity against SVV infection. Our study suggests the CRISPR-Cas13d system significantly inhibited SVV replication and exhibited potent anti-SVV activity. This knowledge may provide a novel alternative strategy to control epidemics of SVV in the future.

9.
Nat Chem Biol ; 18(3): 281-288, 2022 03.
Article in English | MEDLINE | ID: mdl-34937912

ABSTRACT

Sphingosine-1-phosphate receptor 1 (S1PR1) is a master regulator of lymphocyte egress from the lymph node and an established drug target for multiple sclerosis (MS). Mechanistically, therapeutic S1PR1 modulators activate the receptor yet induce sustained internalization through a potent association with ß-arrestin. However, a structural basis of biased agonism remains elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of Gi-bound S1PR1 in complex with S1P, fingolimod-phosphate (FTY720-P) and siponimod (BAF312). In combination with functional assays and molecular dynamics (MD) studies, we reveal that the ß-arrestin-biased ligands direct a distinct activation path in S1PR1 through the extensive interplay between the PIF and the NPxxY motifs. Specifically, the intermediate flipping of W2696.48 and the retained interaction between F2656.44 and N3077.49 are the key features of the ß-arrestin bias. We further identify ligand-receptor interactions accounting for the S1PR subtype specificity of BAF312. These structural insights provide a rational basis for designing novel signaling-biased S1PR modulators.


Subject(s)
Fingolimod Hydrochloride , Multiple Sclerosis , Cryoelectron Microscopy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Multiple Sclerosis/drug therapy , Sphingosine-1-Phosphate Receptors , beta-Arrestins
10.
Front Microbiol ; 12: 693799, 2021.
Article in English | MEDLINE | ID: mdl-34512570

ABSTRACT

Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/ß) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV's pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.

11.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3859-3864, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34472260

ABSTRACT

This study explored the chemical constituents of the aerial part of Hypericum curvisepalum. Sixteen compounds were isolated from the 95% ethanol extract of H. curvisepalum with various chromatographic techniques, including a new prenylated phenyl polyketide, mysorenone D(1). Other compounds were mysorenone-A(2), mysorenone-C(3), mysorenone-B(4), peplidiforone A(5), 4-methoxy-3-(2-methylbut-3-en-2-yl)-6-phenyl-2H-pyran-2-one(6), hyperenone-A(7), 4-(3,3-dimethylallyl)oxy-6-phenyl-α-pyrone(8), peplidiforone B(9), elegaphenone(10), hypercohin A(11), hyperisampsin G(12), spathulenol(13), quercetin(14), ß-sitosterol(15), and ß-amyrin(16).


Subject(s)
Hypericum , Benzophenones , Quercetin
12.
J Virol ; 95(21): e0094421, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34406863

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a recently discovered coronavirus that poses a potential threat to the global swine industry. Although we know that aminopeptidase N (APN) is important for PDCoV replication, it is unclear whether it is the primary functional receptor, and the mechanism by which it promotes viral replication is not fully understood. Here, we systematically investigated the roles of porcine APN (pAPN) during PDCoV infection of nonsusceptible cells, including in viral attachment and internalization. Using a viral entry assay, we found that PDCoV can enter nonsusceptible cells but then fails to initiate efficient replication. pAPN and PDCoV virions clearly colocalized with the endocytotic markers RAB5, RAB7, and LAMP1, suggesting that pAPN mediates PDCoV entry by an endocytotic pathway. Most importantly, our study shows that regardless of which receptor PDCoV engages, only entry by an endocytotic route ultimately leads to efficient viral replication. This knowledge should contribute to the development of efficient antiviral treatments, which are especially useful in preventing cross-species transmission. IMPORTANCE PDCoV is a pathogen with the potential for transmission across diverse species, although the mechanism of such host-switching events (from swine to other species) is poorly understood. Here, we show that PDCoV enters nonsusceptible cells but without efficient replication. We also investigated the key role played by aminopeptidase N in mediating PDCoV entry via an endocytotic pathway. Our results demonstrate that viral entry via endocytosis is a major determinant of efficient PDCoV replication. This knowledge provides a basis for future studies of the cross-species transmissibility of PDCoV and the development of appropriate antiviral drugs.


Subject(s)
CD13 Antigens/metabolism , Deltacoronavirus/physiology , Endocytosis , Virus Internalization , Animals , Cell Line , Endosomes/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Lysosomes/enzymology , Peptide Hydrolases/metabolism , Receptors, Coronavirus/metabolism , Swine , Virion/physiology , Virus Attachment , Virus Replication
13.
J Biol Chem ; 296: 100435, 2021.
Article in English | MEDLINE | ID: mdl-33610551

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents a global threat, and the interaction between the virus and angiotensin-converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, is a key determinant of the range of hosts that can be infected by the virus. However, the mechanisms underpinning ACE2-mediated viral entry across species remains unclear. Using infection assay, we evaluated SARS-CoV-2 entry mediated by ACE2 of 11 different animal species. We discovered that ACE2 of Rhinolophus sinicus (Chinese rufous horseshoe bat), Felis catus (domestic cat), Canis lupus familiaris (dog), Sus scrofa (wild pig), Capra hircus (goat), and Manis javanica (Malayan pangolin) facilitated SARS-CoV-2 entry into nonsusceptible cells. Moreover, ACE2 of the pangolin also mediated SARS-CoV-2 entry, adding credence to the hypothesis that SARS-CoV-2 may have originated from pangolins. However, the ACE2 proteins of Rhinolophus ferrumequinum (greater horseshoe bat), Gallus gallus (red junglefowl), Notechis scutatus (mainland tiger snake), or Mus musculus (house mouse) did not facilitate SARS-CoV-2 entry. In addition, a natural isoform of the ACE2 protein of Macaca mulatta (rhesus monkey) with the Y217N mutation was resistant to SARS-CoV-2 infection, highlighting the possible impact of this ACE2 mutation on SARS-CoV-2 studies in rhesus monkeys. We further demonstrated that the Y217 residue of ACE2 is a critical determinant for the ability of ACE2 to mediate SARS-CoV-2 entry. Overall, these results clarify that SARS-CoV-2 can use the ACE2 receptors of multiple animal species and show that tracking the natural reservoirs and intermediate hosts of SARS-CoV-2 is complex.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/transmission , Pandemics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/diagnosis , COVID-19/immunology , Cats , Chickens/virology , Chiroptera/virology , Dogs , Elapidae/virology , Eutheria/virology , Gene Expression , Goats/virology , HEK293 Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Macaca mulatta/virology , Mice , Models, Molecular , Mutation , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Swine/virology , Virus Internalization
14.
Dose Response ; 18(2): 1559325820918450, 2020.
Article in English | MEDLINE | ID: mdl-32425721

ABSTRACT

Accumulating evidence suggests that abnormal expression and dysfunction of microRNA is involved in development of cancers. However, the function of miR-520f especially in human melanoma remains elusive. In the current study, the underlying function of miR-520f in human melanoma was investigated. Our study demonstrated that the miR-520f level in human melanoma cell lines and clinical tissues was increased. Overexpression of miR-520f promoted cell proliferation by using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation, anchorage-independent growth assay, and 5-bromo-2-deoxyuridine assays. Furthermore, we revealed that miR-520f could interact with circular RNA Itchy E3 ubiquitin protein ligase (ITCH) 3'-untranslated region and suppress ITCH expression in human melanoma cells. The inhibitory effect of miR-520f-in could be partially restored by knockdown of ITCH in human melanoma cells. In summary, this study provides novel insights into miR-520f act as a crucial role in the regulation of human melanoma cell growth via regulating ITCH, which might be a potential biomarker and therapeutic target of human melanoma.

16.
Nano Lett ; 20(2): 1417-1427, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31930919

ABSTRACT

Labeling viruses with high-photoluminescence quantum dots (QDs) for single virus tracking provides a visual tool to aid our understanding of viral infection mechanisms. However, efficiently labeling internal viral components without modifying the viral envelope and capsid remains a challenge, and existing strategies are not applicable to most viruses. Here, we have devised a strategy using the clustered regularly interspaced short palindromic repeats (CRISPR) imaging system to label the nucleic acids of Pseudorabies virus (PRV) with QDs. In this strategy, QDs were conjugated to viral nucleic acids with the help of nuclease-deactivated Cas9/gRNA complexes in the nuclei of living cells and then packaged into PRV during virion assembly. The processes of PRV-QD adsorption, cytoplasmic transport along microtubules, and nuclear entry were monitored in real time in both Vero and HeLa cells, demonstrating the utility and efficiency of the strategy in the study of viral infection.


Subject(s)
CRISPR-Cas Systems/genetics , Herpesvirus 1, Suid/isolation & purification , Quantum Dots/chemistry , Virion/isolation & purification , Capsid , HeLa Cells , Herpesvirus 1, Suid/ultrastructure , Humans , Virion/genetics
17.
Viruses ; 12(1)2020 01 02.
Article in English | MEDLINE | ID: mdl-31906441

ABSTRACT

The transcription factor NF-κB plays a critical role in diverse biological processes. The NF-κB pathway can be activated by incoming pathogens and then stimulates both innate and adaptive immunity. However, many viruses have evolved corresponding strategies to balance NF-κB activation to benefit their replication. Pseudorabies virus (PRV) is an economically important pathogen that belongs to the alphaherpesvirus group. There is little information about PRV infection and NF-κB regulation. This study demonstrates for the first time that the UL24 protein could abrogate tumor necrosis factor alpha (TNF-α)-mediated NF-κB activation. An overexpression assay indicated that UL24 inhibits this pathway at or downstream of P65. Furthermore, co-immunoprecipitation analysis demonstrated that UL24 selectively interacts with P65. We demonstrated that UL24 could significantly degrade P65 by the proteasome pathway. For the first time, PRV UL24 was shown to play an important role in NF-κB evasion during PRV infection. This study expands our understanding that PRV can utilize its encoded protein UL24 to evade NF-κB signaling.


Subject(s)
Herpesvirus 1, Suid/metabolism , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Viral Nonstructural Proteins/metabolism , Cell Line , Gene Knockout Techniques , Herpesvirus 1, Suid/genetics , Humans , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/drug effects , Viral Nonstructural Proteins/genetics
18.
AMB Express ; 10(1): 3, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31912330

ABSTRACT

PCV3 capsid protein (Cap) is an important antigen for diagnosis and vaccine development. To achieve high-level expression of recombinant PCV3 Cap in Escherichia coli (E. coli), the gene of wild-type entire Cap (wt-eCap) was amplified from clinical samples, and three optimized entire Cap (opti-eCap) and one optimized Cap deleted nuclear location signal (NLS) (opti-dCap) gene fragments encoding the same amino acid sequence with wt-eCap were synthesized based on the codon bias of E. coli. Those gene fragments were inserted into the pET30a expression vector. One recombinant strain with the highest expressed soluble eCap from four entire Cap (one wt-eCap and three opti-eCap) and one recombinant strain expressed opti-dCap were selected for further purification. The purified eCap and dCap were identified by transmission electron microscopy (TEM), a large number of round hollow particles with a diameter of 10 nm virus-like particles (VLPs) were observed in eCap, whereas irregular aggregation of proteins observed in dCap. After formation the VLPs were applied as a coating antigen to establish an indirect ELISA (I-ELISA) for detection of PCV3-specific antibody in swine serum. 373 clinical swine serum samples from China collected in 2019 were tested utilizing the VLP-based I-ELISA method under optimized conditions. To the best of our knowledge, this is the first report of self-assembly into VLPs of PCV3 recombinant Cap. Our results demonstrated that the VLP-based I-ELISA will be a valuable tool for detecting the presence of PCV3 antibodies in serum samples and will facilitate screening of large numbers of swine serum for clinical purposes.

19.
Nat Prod Res ; 34(11): 1521-1527, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30445866

ABSTRACT

A new ester (1) and a terpenoid (2) were isolated from the dried whole plant of Disporopsis aspersa (HUA) ENGL. ex DIELS for the first time and their structures were elucidated, as well as their biological activities are described. The two compounds all showed good antifungal activities, especially furanone (2) exhibited better antifungal activity against Pseudoperonospora cubensis and Phytophthora infestans with EC50 value of 22.82, 18.90 µg/mL, respectively. Compound 1 exhibited a significant promotion on the neurite outgrowth in NGF-induced PC-12 cells, and moderate inhibition on the NO production induced by lipopolysaccharide (LPS) in BV-2 microglial cells.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Antifungal Agents/isolation & purification , Asparagaceae/chemistry , Neuronal Outgrowth/drug effects , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/pharmacology , Esters/isolation & purification , Esters/pharmacology , Microglia/drug effects , Nitric Oxide/antagonists & inhibitors , PC12 Cells/drug effects , PC12 Cells/ultrastructure , Phytophthora infestans/drug effects , Plant Extracts/chemistry , Rats , Terpenes/isolation & purification , Terpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...