Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
2.
Microsc Microanal ; 29(6): 2174-2183, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38066680

ABSTRACT

N6-methyladenosine (m6A), the most prevalent modification in eukaryotic messenger RNA (mRNA), plays a key role in various developmental processes in mammals. Three proteins that affect RNA m6A modification have been identified: methyltransferases, demethylases, and m6A-binding proteins, known as "writer," "eraser," and "reader" proteins, respectively. However, changes in the m6A modification when early porcine embryos are exposed to stress remain unclear. In this study, we exposed porcine oocytes to a high temperature (HT, 41°C) for 10 h, after which the mature oocytes were parthenogenetically activated and cultured for 7 days to the blastocyst stage. HT significantly decreased the rates of the first polar body extrusion and blastocyst formation. Further detection of m6A modification found that HT can lead to increased expression levels of "reader," YTHDF2, and "writer," METTL3, and decreased expression levels of "eraser," FTO, resulting in an increased level of m6A modification in the embryos. Additionally, heat shock protein 70 (HSP70) is upregulated under HT conditions. Our study demonstrated that HT exposure alters m6A modification levels, which further affects early porcine embryonic development.


Subject(s)
Embryonic Development , Epigenesis, Genetic , Animals , Swine , Temperature , Mammals
3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569497

ABSTRACT

Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.


Subject(s)
Telomere , Transcription Factors , Animals , Mice , Swine , Transcription Factors/genetics , Transcription Factors/metabolism , Telomere/genetics , Telomere/metabolism , Telomere Shortening , DNA-Binding Proteins/metabolism , Zygote/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental
4.
Zool Res ; 44(5): 848-859, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37501400

ABSTRACT

Activating transcription factor 6 (ATF6), one of the three sensor proteins in the endoplasmic reticulum (ER), is an important regulator of ER stress-induced apoptosis. ATF6 resides in the ER and, upon activation, is translocated to the Golgi apparatus, where it is cleaved by site-1 protease (S1P) to generate an amino-terminal cytoplasmic fragment. Although recent studies have made progress in elucidating the regulatory mechanisms of ATF6, its function during early porcine embryonic development under high-temperature (HT) stress remains unclear. In this study, zygotes were divided into four groups: control, HT, HT+ATF6 knockdown, and HT+PF (S1P inhibitor). Results showed that HT exposure induced ER stress, which increased ATF6 protein expression and led to a decrease in the blastocyst rate. Next, ATF6 expression was knocked down in HT embryos under microinjection of ATF6 double-stranded RNA (dsRNA). Results revealed that ATF6 knockdown (ATF6-KD) attenuated the increased expression of CHOP, an ER stress marker, and Ca 2+ release induced by HT. In addition, ATF6-KD alleviated homeostasis dysregulation among organelles caused by HT-induced ER stress, and further reduced Golgi apparatus and mitochondrial dysfunction in HT embryos. AIFM2 is an important downstream effector of ATF6. Results showed that ATF6-KD reduced the occurrence of AIFM2-mediated embryonic apoptosis at HT. Taken together, our findings suggest that ATF6 is a crucial mediator of apoptosis during early porcine embryonic development, resulting from HT-induced ER stress and disruption of organelle homeostasis.


Subject(s)
Activating Transcription Factor 6 , Endoplasmic Reticulum , Animals , Swine , Activating Transcription Factor 6/genetics , Activating Transcription Factor 6/metabolism , Temperature , Endoplasmic Reticulum/metabolism , Apoptosis , Homeostasis , Embryonic Development
5.
Front Cell Dev Biol ; 11: 1147095, 2023.
Article in English | MEDLINE | ID: mdl-37123411

ABSTRACT

YME1L1, a mitochondrial metalloproteinase, is an Adenosine triphosphate (ATP)-dependent metalloproteinase and locates in the mitochondrial inner membrane. The protease domain of YME1L1 is oriented towards the mitochondrial intermembrane space, which modulates the mitochondrial GTPase optic atrophy type 1 (OPA1) processing. However, during embryonic development, there is no report yet about the role of YME1L1 on mitochondrial biogenesis and function in pigs. In the current study, the mRNA level of YME1L1 was knocked down by double strand RNA microinjection to the 1-cell stage embryos. The expression patterns of YME1L1 and its related proteins were performed by immunofluorescence and western blotting. To access the biological function of YME1L1, we first counted the preimplantation development rate, diameter, and total cell number of blastocyst on day-7. First, the localization of endogenous YME1L1 was found in the punctate structures of the mitochondria, and the expression level of YME1L1 is highly expressed from the 4-cell stage. Following significant knock-down of YME1L1, blastocyst rate and quality were decreased, and mitochondrial fragmentation was induced. YME1L1 knockdown induced excessive ROS production, lower mitochondrial membrane potential, and lower ATP levels. The OPA1 cleavage induced by YME1L1 knockdown was prevented by double knock-down of YME1L1 and OMA1. Moreover, cytochrome c, a pro-apoptotic signal, was released from the mitochondria after the knock-down of YME1L1. Taken together, these results indicate that YME1L1 is essential for regulating mitochondrial fission, function, and apoptosis during porcine embryo preimplantation development.

6.
Sci Rep ; 13(1): 8427, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225872

ABSTRACT

Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.


Subject(s)
Heat Stress Disorders , Thioctic Acid , Animals , Antioxidants/pharmacology , Apoptosis , Blastocyst , Heat-Shock Response , Swine , Thioctic Acid/pharmacology
7.
J Cell Physiol ; 238(7): 1592-1604, 2023 07.
Article in English | MEDLINE | ID: mdl-37204013

ABSTRACT

Y-box binding protein 1 (YBX1) is a member of the family of DNA- and RNA-binding proteins that play crucial roles in multiple aspects, including RNA stabilization, translational repression, and transcriptional regulation; however, its roles in embryo development remain less known. In this study, to investigate the function of YBX1 and its mechanism of action in porcine embryo development, YBX1 was knocked down by microinjecting YBX1 siRNA at the one-cell stage. YBX1 is located in the cytoplasm during embryonic development. The mRNA level of YBX1 was increased from the four-cell stage to the blastocyst stage but was significantly decreased in YBX1 knockdown embryos compared with the control. Moreover, the percentage of blastocysts was decreased following YBX1 knockdown compared with the control. Defecting YBX1 expression increased maternal gene mRNA expression and decreased zygotic genome activation (ZGA) gene mRNA expression and histone modification owing to decreased levels of N6-methyladenosine (m6A) writer N6-adenosine-methyltransferase 70 kDa subunit (METTL3) and reader insulin-like growth factor 2 mRNA-binding protein (IGF2BP1). In addition, IGF2BP1 knockdown showed that YBX1 regulated the ZGA process through m6A modification. In conclusion, YBX1 is essential for early embryo development because it regulates the ZGA process.


Subject(s)
DNA-Binding Proteins , Embryonic Development , Zygote , Animals , Adenosine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Zygote/metabolism , DNA-Binding Proteins/metabolism
8.
ACS Appl Mater Interfaces ; 15(22): 27120-27129, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37248165

ABSTRACT

Although significant advances have been achieved in developing solar-driven water evaporators for seawater desalination, there is still room for simultaneously enhancing water evaporation efficiency, salt resistance, and utilization of solar energy. Herein, for the first time, we demonstrate a highly efficient three-dimensional (3D) mirror-assisted and concave pyramid-shaped solar-thermal water evaporation system for high-yield and long-term desalination of seawater and brine water, which consists of a 3D concave pyramid-shaped solar-thermal architecture on the basis of polypyrrole-coated nonwoven fabrics (PCNFs), a 3D mirror array, a self-floating polystyrene foam layer, and a tail-like PCNF for upward transport of water. The 3D concave pyramid-shaped solar-thermal architecture enables multiple solar light reflections to absorb more solar energy, while the 3D mirror-assisted solar light enhancement design can activate the solar-thermal energy conversion of the back side of the concave pyramid-shaped PCNF architecture to improve the solar-thermal energy conversion efficiency. Crucially, selective accumulation of the precipitated salts on the back side of the concave pyramid-shaped architecture is realized, ensuring a favorable salt-resistant feature. The 3D mirror-assisted and concave pyramid-shaped solar-driven water evaporation system achieves a record high water evaporation rate of 4.75 kg m-2 h-1 under 1-sun irradiation only and exhibits long-term desalination stability even when evaporating high-salinity brine waters, demonstrating its great applicability and reliability for high-yield solar-driven desalination of seawater and high-salinity brine water.

9.
Front Surg ; 10: 1036344, 2023.
Article in English | MEDLINE | ID: mdl-36824493

ABSTRACT

Objective: Postoperative nosocomial pneumonia is a terrible complication, especially for elderly patients. This study attempts to investigate the incidence and risk factors for postoperative nosocomial pneumonia and its influence on hospitalization stay in elderly patients with hip fractures. Methods: This study retrospectively retrieved hospitalization records of patients who presented a hip fracture and underwent surgeries in our institution between January 2014 and December 2021. Postoperative new-onset pneumonia was determined in accordance with discharge diagnosis. Multivariate logistic regression analysis was performed to identify the associated risk factors with pneumonia, and its influence on total hospitalization stay or postoperative hospitalization stay was investigated by multivariate linear regression analyses. Results: Totally, 808 patients were included, among whom 54 developed a pneumonia representing the incidence rate of 6.7% (95% CI, 5.0%-8.4%). Six factors were identified as independently associated with pneumonia, including advanced age (OR, 1.50 for each 10-year increment), history of chronic respiratory disease (OR, 4.61), preoperative DVT (OR, 3.51), preoperative delay to operation (OR, 1.07 for each day), surgical duration ≥120 min (OR, 4.03) and arthroplasty procedure (OR, 4,39). When adjusted for above confounders, pneumonia was significantly positively associated with total hospitalization stay (standardized coefficient, 0.110; p < 0.001) and postoperative hospitalization stay (standardized coefficient, 0.139; p < 0.001). Conclusions: This study identified multiple factors associated with postoperative pneumonia and its influence on prolonging hospitalization stay, which would facilitate preventive targeted intervention into implementation for individuals with different risk profiles.

10.
Theriogenology ; 196: 227-235, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36427391

ABSTRACT

In mammals, E2 factor (E2F) acts as a cell cycle regulator. E2F transcription factor 4 (E2F4) is a member of the E2F family of transcription factors and usually represents predominant E2F activity in cells. The E2F4 gene has been extensively studied in animals and is associated with multiple functions, such as cell cycle regulation and apoptosis; however, little is known about its role during embryonic development. In this study, we investigated the function of E2F4 and its mechanism of action in porcine embryo development. For this purpose, we knocked down E2F4 by microinjecting double-stranded RNA of E2F4 at the 1-cell stage. The results showed that E2F4 knockdown in porcine embryos led to a significant decrease in the blastocyst rate and total cell number. Defective E2F4 expression reduced the level of G1/S checkpoints (cyclin E-cyclin-dependent kinase 2) and cell cycle-related gene expression at the 4-cell embryo stage and blastocyst. Moreover, a decrease in E2F4 expression increased phosphorylated H2A.X variant histones and activated ataxia telangiectasia mutated (ATM) and p53-p21 pathway. In addition, E2F4 depletion caused a significant decrease in histone acetylation. Taken together, E2F4 plays a critical role as a transcriptional activator in the development of porcine embryos, an observation that contradicts its well-established role as a transcription repressor.


Subject(s)
Embryonic Development , Swine , Animals , Cell Cycle , Mammals
11.
Cell Prolif ; 56(2): e13352, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36254813

ABSTRACT

BACKGROUND: Activating transcription factor 7 (ATF7) is a member of the ATF/cAMP response element (CRE) B superfamily. ATF2, ATF7, and CRE-BPa are present in vertebrates. Drosophila and fission yeast have only one homologue: dATF2 and Atf1, respectively. Under normal conditions, ATF7 promotes heterochromatin formation by recruiting histone H3K9 di- and tri-methyltransferases. Once the situation changes, all members are phosphorylated by the stress-activated kinase P38 in response to various stressors. However, the role of ATF7 in early porcine embryonic development remains unclear. RESULTS: In this study, we found that ATF7 gradually accumulated in the nucleus and then localized on the pericentric heterochromatin after the late 4-cell stage, while being co-localized with heterochromatin protein 1 (HP1). Knockdown of ATF7 resulted in decreases in the blastocyst rate and blastocyst cell number. ATF7 depletion resulted in downregulation of HP1 and histone 3 lysine 9 dimethylation (H3K9me2) expression. These effects were alleviated when P38 activity was inhibited. High temperatures increased the expression level of pP38, while reducing the quality of porcine embryos, and led to ATF7 phosphorylation. The expression level of H3K9me2 and HP1 was decreased and regulated by P38 activity. CONCLUSION: Stress-induced ATF7-dependent epigenetic changes play important roles in early porcine embryonic development.


Subject(s)
Activating Transcription Factors , Histones , Animals , Swine , Histones/metabolism , Activating Transcription Factors/genetics , Activating Transcription Factors/metabolism , Heterochromatin , Temperature , Epigenesis, Genetic , Chromosomal Proteins, Non-Histone/metabolism
12.
Aging (Albany NY) ; 14(21): 8633-8644, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36375471

ABSTRACT

Increased levels of oxidative stress are major factors that drive the process of post-ovulatory oocyte aging. Epigallocatechin-3-gallate (EGCG), which accounts for up to 50% of the catechins, possesses versatile biological functions, including preventing or treating diabetes, cancer, and heart diseases. The aim of this study was to explore whether EGCG can delay porcine oocyte aging by preventing oxidative stress. Metaphase II (MII) oocytes were cultured for 48 h with different concentrations of EGCG (0-100 µM) in vitro as a post-ovulatory aging model. An optimal concentration of 5 µM EGCG maintained oocyte morphology and developmental competence during aging. The oocytes were randomly divided into five groups: fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG. The results suggest that EGCG significantly prevents aging-induced oxidative stress, glutathione (GSH) reduction, apoptosis, and autophagy. Moreover, mitochondria DNA copy number was decreased, and the number of active mitochondria and adenosine triphosphate (ATP) levels significantly increased by supplementation with EGCG. Thus, EGCG has a preventive role against aging in porcine post-ovulatory oocytes due to its ability to inhibit oxidative stress and promote mitochondrial biogenesis.


Subject(s)
Catechin , Oocytes , Animals , Aging , Catechin/pharmacology , Glutathione , Oxidative Stress , Swine
13.
PLoS One ; 17(11): e0277477, 2022.
Article in English | MEDLINE | ID: mdl-36441709

ABSTRACT

Rotenone is a commonly used insecticidal chemical in agriculture and it is an inhibitor of mitochondrial complex Ⅰ. Previous studies have found that rotenone induces the production of reactive oxygen species (ROS) by inhibiting electron transport in the mitochondria of somatic and germ cells. However, there is little precise information on the effects of rotenone exposure in porcine oocytes during in vitro maturation, and the mechanisms underlying these effects have not been determined. The Cumulus-oocyte complexes were supplemented with different concentrations of rotenone to elucidate the effects of rotenone exposure on the meiotic maturation of porcine oocytes during in vitro maturation for about 48 hours. First, we found that the maturation rate and expansion of cumulus cells were significantly reduced in the 3 and 5 µM rotenone-treated groups. Subsequently, the concentration of rotenone was determined to be 3 µM. Also, immunofluorescence, western blotting, and image quantification analyses were performed to test the rotenone exposure on the meiotic maturation, total and mitochondrial ROS, mitochondrial function and biogenesis, mitophagy and apoptosis in porcine oocytes. Further experiments showed that rotenone treatment induced mitochondrial dysfunction and failure of mitochondrial biogenesis by repressing the level of SIRT1 during in vitro maturation of porcine oocytes. In addition, rotenone treatment reduced the ratio of active mitochondria to total mitochondria, increased ROS production, and decreased ATP production. The levels of LC3 and active-caspase 3 were significantly increased by rotenone treatment, indicating that mitochondrial dysfunction induced by rotenone increased mitophagy but eventually led to apoptosis. Collectively, these results suggest that rotenone interferes with porcine oocyte maturation by inhibiting mitochondrial function.


Subject(s)
Oocytes , Rotenone , Swine , Animals , Female , Rotenone/pharmacology , Reactive Oxygen Species , Cumulus Cells , Mitochondria
14.
Chem Commun (Camb) ; 58(37): 5646-5649, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35441626

ABSTRACT

This study reports a facile boron-assisted strategy to prepare NiFe LDHs with rich grain boundaries. The formation of these grain boundaries originates from the imperfect oriented attachment between primary LDH particles transformed from amorphous borides/borates. The obtained grain-boundary-rich NiFe LDHs exhibit excellent oxygen evolution reaction activity.

15.
Front Cell Dev Biol ; 10: 826801, 2022.
Article in English | MEDLINE | ID: mdl-35252192

ABSTRACT

Heat stress (HS) has been known to cause reproductive failure in animals, especially in summer. HS severely affects the developmental potential of oocytes and leads to low fertility rates. Previous studies have reported that HS compromises embryo development in bovine oocytes, and reduces ovarian development in mice, thereby impairing reproductive function in animals. However, the effect of high temperature (HT) on the organelles of porcine oocytes is unknown. In this study, we reported that exposure to HT for 24 h (41°C) significantly decreased meiotic maturation in porcine oocytes (p < 0.05). Further experiments on organelles found that HT induced mitochondrial dysfunction, increased abnormal mitochondrial distribution, and decreased mitochondrial membrane potential (MMP). We also found that HT induced abnormal endoplasmic reticulum (ER) distribution and higher expression of glucose regulatory protein 78 (GRP78), suggesting that HT exposure induces ER stress. Our results also indicated that exposure to HT induced abnormal distribution and dysfunction of the Golgi apparatus, which resulted from a decrease in the expression of the vesicle transporter, Ras-related protein Rab-11A (RAB11A). In addition, we found that HT exposure led to lysosomal damage by increasing the expression of lysosome-associated membrane protein 2 (LAMP2) and microtubule-associated protein 1A/1B-light chain 3 (LC3). In summary, our study revealed that HT exposure disrupts organelle dynamics, which further leads to the failure of meiotic maturation in porcine oocytes.

16.
Cell Div ; 16(1): 7, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915903

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) modulator 1 (ROMO1) is a mitochondrial membrane protein that is essential for the regulation of mitochondrial ROS production and redox sensing. ROMO1 regulates ROS generation within cells and is involved in cellular processes, such as cell proliferation, senescence, and death. Our purpose is to investigates the impact of ROMO1 on the mitochondria during porcine embryogenesis. RESULTS: We found that high expression of ROMO1 was associated with porcine preimplantation embryo development, indicating that ROMO1 may contribute to the progression of embryogenesis. Knockdown of ROMO1 disrupted porcine embryo development and blastocyst quality, thereby inducing ROS production and decreasing mitochondrial membrane potential. Knockdown of ROMO1 induced mitochondrial dysfunction by disrupting the balance of OPA1 isoforms to release cytochrome c, reduce ATP, and induce apoptosis. Meanwhile, ROMO1 overexpression showed similar effects as ROMO1 KD on the embryos. Overexpression of ROMO1 rescued the ROMO1 KD-induced defects in embryo development, mitochondrial fragmentation, and apoptosis. CONCLUSIONS: ROMO1 plays a critical role in embryo development by regulating mitochondrial morphology, function, and apoptosis in pigs.

17.
Cell Div ; 16(1): 3, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112192

ABSTRACT

BACKGROUND: Ral family is a member of Ras-like GTPase superfamily, which includes RalA and RalB. RalA/B play important roles in many cell biological functions, including cytoskeleton dynamics, cell division, membrane transport, gene expression and signal transduction. However, whether RalA/B involve into the mammalian oocyte meiosis is still unclear. This study aimed to explore the roles of RalA/B during mouse oocyte maturation. RESULTS: Our results showed that RalA/B expressed at all stages of oocyte maturation, and they were enriched at the spindle periphery area after meiosis resumption. The injection of RalA/B siRNAs into the oocytes significantly disturbed the polar body extrusion, indicating the essential roles of RalA/B for oocyte maturation. We observed that in the RalA/B knockdown oocytes the actin filament fluorescence intensity was significantly increased at the both cortex and cytoplasm, and the chromosomes were failed to locate near the cortex, indicating that RalA/B regulate actin dynamics for spindle migration in mouse oocytes. Moreover, we also found that the Golgi apparatus distribution at the spindle periphery was disturbed after RalA/B depletion. CONCLUSIONS: In summary, our results indicated that RalA/B affect actin dynamics for chromosome positioning and Golgi apparatus distribution in mouse oocytes.

18.
FEBS J ; 288(9): 3055-3067, 2021 05.
Article in English | MEDLINE | ID: mdl-33206458

ABSTRACT

Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.


Subject(s)
Cell Cycle Proteins/genetics , Kinesins/genetics , Meiosis/genetics , Spindle Apparatus/genetics , Anaphase/genetics , Animals , Chromosome Segregation/genetics , Cytokinesis/genetics , Mice , Microtubules/genetics , Mitosis/genetics , Oocytes/growth & development , Oocytes/metabolism , Oogenesis/genetics
19.
J Cell Biochem ; 122(2): 290-300, 2021 02.
Article in English | MEDLINE | ID: mdl-33025669

ABSTRACT

Monopolar spindle-1 (Mps1) is a critical interphase regulator that also involves into the spindle assembly checkpoint for the cell cycle control in both mitosis and meiosis. However, the functions of Mps1 during mouse early embryo development is still unclear. In this study, we reported the important roles of Mps1 in the first cleavage of mouse embryos. Our data indicated that the loss of Mps1 activity caused precocious cleavage of zygotes to 2-cell embryos; however, prolonged culture disturbed the early embryo development to the blastocyst. We found that the spindle organization was disrupted after Mps1 inhibition, and the chromosomes were misaligned in the first cleavage. Moreover, the kinetochore-microtubule attachment was lost and Aurora B failed to accumulate to the kinetochores, indicating that the spindle assembly checkpoint (SAC) was activated. Furthermore, the inhibition of Mps1 activity resulted in an increase of DNA damage, which further induced oxidative stress, showing with positive γ-H2A.X signal and increased reactive oxygen species level. Ultimately, irreparable DNA damage and oxidative stress-activated apoptosis and autophagy, which was confirmed by the positive Annexin-V signal and increased autophagosomes. Taken together, our data indicated that Mps1 played important roles in the control of SAC and DNA repair during mouse early embryo development.


Subject(s)
M Phase Cell Cycle Checkpoints/physiology , Mitosis/physiology , Spindle Apparatus/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation/genetics , Chromosome Segregation/physiology , DNA Damage/genetics , DNA Damage/physiology , DNA Repair/genetics , DNA Repair/physiology , Female , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/genetics , Meiosis/genetics , Meiosis/physiology , Mice , Microtubules/metabolism , Mitosis/genetics
20.
Environ Mol Mutagen ; 62(2): 124-132, 2021 02.
Article in English | MEDLINE | ID: mdl-32683748

ABSTRACT

Zearalenone (ZEN) is one of the most common mycotoxins produced by fungus in contaminated feed. ZEN has multiple toxicities, including reproductive toxicity of domestic animals, particularly pigs. However, studies on the effects of ZEN on ovary/oocytes have been primarily based on in vitro experiments, and there is still no evidence from porcine in vivo models due to multiple limitations. Moreover, no report has investigated the effect of hydrated sodium calcium aluminosilicate (HSCAS) as a supplement on pig oocyte quality. In the present study, we fed pigs a 1.0 mg/kg ZEN-contaminated diet for 10 days. The results showed that pigs fed ZEN presented reduced oocyte-cumulus cell interactions, an increase in the number of denuded oocytes in ovaries, a decrease in the number of oocytes in each ovary, and an increase in the oocyte death rate. Oocytes from ZEN-exposed pigs exhibited a delayed cell cycle and abnormal cytoskeletal dynamics during meiotic maturation, which could be due to oxidative stress-induced autophagy. Moreover, we also show that supplementing the ZEN-contaminated diet with modified HSCAS effectively protected porcine oocyte quality. Taken together, our study provides in vivo data demonstrating the protective effects of HSCAS against ZEN toxicity in porcine oocytes.


Subject(s)
Aluminum Silicates/pharmacology , Oocytes/drug effects , Zearalenone/toxicity , Animals , Autophagy/drug effects , Cell Cycle/drug effects , Diet , Dietary Supplements , Female , Ovary/drug effects , Oxidative Stress/drug effects , Reproduction/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...