Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Adv Sci (Weinh) ; 11(6): e2306156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062916

ABSTRACT

Acute lung injury (ALI) is a severe respiratory disease with a high mortality rate. The integrity of the pulmonary endothelial barrier influences the development and prognosis of ALI. Therefore, it has become an important target for ALI treatment. Extracellular vesicles (EVs) are promising nanotherapeutic agents against ALI. Herein, endothelium-derived engineered extracellular vesicles (eEVs) that deliver microRNA-125b-5p (miRNA-125b) to lung tissues exerting a protective effect on endothelial barrier integrity are reported. eEVs that are modified with lung microvascular endothelial cell-targeting peptides (LET) exhibit a prolonged retention time in lung tissues and targeted lung microvascular endothelial cells in vivo and in vitro. To improve the efficacy of the EVs, miRNA-125b is loaded into EVs. Finally, LET-EVs-miRNA-125b is constructed. The results show that compared to the EVs, miRNA-125b, and EVs-miRNA-125b, LET-EVs-miRNA-125b exhibit the most significant treatment efficacy in ALI. Moreover, LET-EVs-miRNA-125b is found to have an important protective effect on endothelial barrier integrity by inhibiting cell apoptosis, promoting angiogenesis, and protecting intercellular junctions. Sequencing analysis reveals that LET-EVs-miRNA-125b downregulates early growth response-1 (EGR1) levels, which may be a potential mechanism of action. Taken together, these findings suggest that LET-EVs-miRNA-125b can treat ALI by protecting the endothelial barrier integrity.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , MicroRNAs , Humans , Endothelial Cells , Lung , MicroRNAs/genetics , Acute Lung Injury/therapy , Endothelium
2.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836685

ABSTRACT

Mpox virus (MPXV), the most pathogenic zoonotic orthopoxvirus, caused worldwide concern during the SARS-CoV-2 epidemic. Growing evidence suggests that the MPXV surface protein A29 could be a specific diagnostic marker for immunological detection. In this study, a fully synthetic phage display library was screened, revealing two nanobodies (A1 and H8) that specifically recognize A29. Subsequently, an in vitro affinity maturation strategy based on computer-aided design was proposed by building and docking the A29 and A1 three-dimensional structures. Ligand-receptor binding and molecular dynamics simulations were performed to predict binding modes and key residues. Three mutant antibodies were predicted using the platform, increasing the affinity by approximately 10-fold compared with the parental form. These results will facilitate the application of computers in antibody optimization and reduce the cost of antibody development; moreover, the predicted antibodies provide a reference for establishing an immunological response against MPXV.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Single-Domain Antibodies/chemistry , Monkeypox virus , SARS-CoV-2/metabolism , Computer-Aided Design
3.
Fish Shellfish Immunol ; 142: 109153, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37821004

ABSTRACT

To decipher the functional characterization of Nucleophosmin 1a (NPM1a) from grass carp (Ctenopharyngodon idellus) (CiNPM1a), its cDNA was cloned and bioinformatic analysis were conducted. The full-length cDNA sequence of CiNPM1a is 1732 bp, which encodes 307 amino acids. CiNPM1a contains conserved domains of Nucleoplasmin domain, NPM1-C terminal domain, as well as nuclear localization signals, nuclear export signal (NES) and acid patches. There are 52 and 20 consensus amino acids exist in the Nucleoplasmin domain and the NPM1-C terminal domain of all blasted species. In addition, the immune function of CiNPM1a were analyzed. The Ciirf7, Ciifn1 and Ciifn2 transcription was inhibited, whereas the vp2 and vp7 expressions were enhanced in CiNPM1a overexpressing cells after GCRV infection (P < 0.05). Moreover, the Ciirf7, Ciifn1 and Ciifn2 mRNA levels were significantly up-regulated, but the vp2 and vp7 expressions were significantly down-regulated in CiNPM1a knockdown cells after infection. This indicated that CiNPM1a played negative roles in the induction of Type I IFN reaction and thus the GCRV replication. Finally, the NES domain that affect the nucleous-cytoplasm shuttle and the replication of GCRV were investigated. The deletion of NES1 and NES(1 + 2+3) absolutely limited the transloacation of CiNPM1a△NES1 protein and CiNPM1a △NES(1 + 2+3) protein to cytoplasm after infection, and the deletion of NES2 resulted in partially limitation of protein shuttle. In general, Ciirf3, Ciirf7, Ciifn1 and Ciifn2 expressions were enhanced in the CiNPM1a△NES1, CiNPM1a△NES2 and CiNPM1a△NES3 overexpression groups, and the deletion of functional domains in CiNPM1a led to significantly reduction of the vp2 and vp7 replication. The results indicated that CiNPM1a may be a target molecular for GCRV infection curation, and a candidate molecular for resistance strain breeding of grass carp.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Animals , DNA, Complementary , Nucleophosmin , Nucleoplasmins , Carps/metabolism , Cytoplasm/metabolism , Amino Acids , Fish Proteins
4.
J Cell Mol Med ; 27(15): 2165-2182, 2023 08.
Article in English | MEDLINE | ID: mdl-37386746

ABSTRACT

Sulfur mustard (SM) is a blister-producing chemical warfare agent which could lead to a cascade of systemic damage, especially severe acute lung injury. Oxidative stress is considered to be vital processes for the SM toxicity mechanism. We previously proved the therapeutic effect of exosomes derived from bone marrow mesenchymal stromal cells in promoting the repair of alveolar epithelial barrier and inhibiting apoptosis. However, the key functional components in exosomes and the underlying mechanisms have not been fully elaborated. This research shed light on the function of the key components of human umbilical cord mesenchymal stem cell-derived exosomes (HMSCs-Ex). We noted that HMSCs-Ex-derived miR-199a-5p played a vital role in reducing pneumonocyte oxidative stress and apoptosis by reducing reactive oxygen species, lipid peroxidation products and increasing the activities of antioxidant enzymes in BEAS-2B cells and mouse models after exposure to SM for 24 h. Furthermore, we demonstrated that the overexpression of miR-199a-5p in HMSCs-Ex treatment induced a further decrease of Caveolin1 and the activation of the mRNA and protein level of NRF2, HO1 and NQO1, compared with HMSCs-Ex administration. In summary, miR-199a-5p was one of the key molecules in HMSCs-Ex that attenuated SM-associated oxidative stress via regulating CAV1/NRF2 signalling pathway.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Mustard Gas , Animals , Humans , Mice , Exosomes/genetics , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Mustard Gas/toxicity , Mustard Gas/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics
5.
Stem Cell Res Ther ; 14(1): 149, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37254188

ABSTRACT

BACKGROUND: Sulfur mustard (SM) is a highly toxic chemical warfare agent that has caused numerous casualties during wars and conflicts in the past century. Specific antidotes or therapeutic strategies are rare due to the complicated mechanism of toxicity, which still awaits elucidation. Clinical data show that acute lung injury (ALI) is responsible for most mortality and morbidity after SM exposure. Extracellular vesicles are natural materials that participate in intercellular communication by delivering various substances and can be modified. In this study, we aim to show that extracellular vesicles derived from human umbilical cord mesenchymal stromal cells (hucMSC-EVs) could exert therapeutic effects on SM-induced ALI, and to explain the underlying mechanism of effects. METHODS: MiR-146a-5p contained in hucMSC-EVs may be involved in the process of hucMSC-EVs modulating the inflammatory response to SM-induced ALI. We utilized miR-146a-5p delivered by extracellular vesicles and further modified hucMSCs with a miR-146a-5p mimic or inhibitor to collect miR-146a-5p-overexpressing extracellular vesicles (miR-146a-5p+-EVs) or miR-146a-5p-underexpressing extracellular vesicles (miR-146a-5p--EVs), respectively. Through in vivo and in vitro experiments, we investigated the mechanism. RESULTS: The effect of miR-146a-5p+-EVs on improving the inflammatory reaction tied to SM injury was better than that of hucMSC-EVs. We demonstrated that miR-146a-5p delivered by hucMSC-EVs targeted TRAF6 to negatively regulate inflammation in SM-induced ALI models in vitro and in vivo. CONCLUSION: In summary, miR-146a-5p delivered by hucMSC-EVs targeted TRAF6, causing hucMSC-EVs to exert anti-inflammatory effects in SM-induced ALI; thus, hucMSC-EVs treatment may be a promising clinical therapeutic after SM exposure.


Subject(s)
Extracellular Vesicles , MicroRNAs , Mustard Gas , Humans , MicroRNAs/genetics , Mustard Gas/toxicity , TNF Receptor-Associated Factor 6 , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Inflammation
6.
Chem Soc Rev ; 52(2): 601-662, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36149439

ABSTRACT

Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.


Subject(s)
Chemical Warfare Agents , Humans , Chemical Warfare Agents/analysis , Fluorescent Dyes
7.
Nat Commun ; 13(1): 7516, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473838

ABSTRACT

Microbes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.


Subject(s)
Genomics , Plastic Surgery Procedures , Bacteria/genetics , Sulfur , Nitrogen
8.
Front Microbiol ; 13: 876665, 2022.
Article in English | MEDLINE | ID: mdl-35910635

ABSTRACT

Seawater intrusion is a major concern commonly found in coastal aquifers worldwide. Because of the intense aquifer exploitation and land-based marine aquaculture in the coastal area of Beihai City, Guangxi Zhuang Autonomous Region, China, numerous underground aquifers in this area have been affected by seawater intrusion. However, the microbial communities in freshwater aquifers and their response to seawater intrusion are still unclear. In this study, groundwater from three aquifers was collected from three monitoring sites at different distances from the coastline in the coastal area of Beihai City, and the hydrochemical characteristics of these groundwater samples and the structure of the associated microbial communities were analyzed. The Cl- concentration of the samples indicated that seawater intrusion had occurred in the research area up to 1.5 km away from the coastline, but the monitoring site 2 km away from the coastline had yet to be affected. Statistical analysis showed that the bacterial communities in different groundwater aquifers were significantly correlated with the Cl- concentration, thereby suggesting that the extent of seawater intrusion might be one of the primary factors shaping bacterial composition in groundwater of this area, but the composition and distribution of archaea did not show a significant response to seawater intrusion and presented no apparent correlation with the Cl- concentration. α-, γ-Proteobacteria and Bacteroidota were the dominant bacterial lineages, accounting for about 58-95% of the bacterial communities. Meanwhile, the predominant archaeal taxa were mainly composed of Crenarchaeota, Nanoarchaeota, and Thermoplasmatota, as accounting for 83-100%. Moreover, there was significant spatial heterogeneity of microbial communities in the aquifers affected by varying degrees of seawater intrusion. The microbial communities inhabiting the unconfined aquifer were influenced by the geochemical fluctuation caused by seawater infiltration from land-based marine aquaculture ponds and the diffusion of eutrophic surface water. In contrast, changes in microbial community structure in the confined aquifers were closely related to the environmental gradient caused by different degrees of seawater intrusion. In addition, we also found that the tidal cycle did not significantly affect the structure of microbial communities inhabiting confined aquifers that had been long affected by seawater intrusion.

9.
Front Neurol ; 13: 827247, 2022.
Article in English | MEDLINE | ID: mdl-35493809

ABSTRACT

Purpose: This study aims to accomplish two tasks for International Classification of Functioning, Disability and Health (ICF) application among persons with stroke: (1) to make an ICF tool for measuring personal abilities with simplified assessment operations; (2) to quantitatively evaluate ICF categories for being functioning rather than being disabled. Methods: A total of 130 inpatients with stroke via convenience sampling were evaluated by the extended comprehensive ICF core set for stroke, modified Rankin scale, and modified Barthel index (MBI). This study investigated the responses to 118 stroke-related ICF items (59 items in b and d domains individually) using Mokken scale analysis followed with Rasch modeling. Results: A Mokken scale with 47 items was extracted from the binary data (1 as no-impairment or mild-impairment and 0 as moderate to complete impairment). A Rasch model with 45 items was derived from the Mokken scale. The conversion chart was available involving the original ordinal scores to Rasch-transformed scores from 0 to 100 (interval scale). Total scores exhibited a high correlation with the personal abilities estimated by the Rasch model. The personal ability also demonstrated a significantly strong correlation with the score of the MBI. Thus, the 45 ICF items were suggested to rate potential functional ability as a single measurement. Conclusion: Based on simple "functioning or disabled" judgment tasks, ICF assessment can be simplified to a questionnaire with answering "yes-or-no" questions for each category. Functioning level for each person and difficulty of being functioning for each category can be estimated by the Rasch model of this questionnaire.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121171, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35325854

ABSTRACT

Nerve agents are highly toxic chemical warfare agents that are easy to synthesize and have recently been applied many times in local wars and terrorist attacks. Fluorescent probes have been widely used in life science and medical research due to their features of short reaction time, high sensitivity and good selectivity. Herein, two fluorescent compounds, NMU-1 and NMU-2, were synthesized for the selective detection of nerve agents. NMU-1 exhibited good detection performance for nerve agents. With increasing nerve agent concentration, the fluorescence signal of NMU-1 at 498 nm gradually decreased with an excellent linear relationship. NMU-1 exhibited a low LOD (4.6 µM for DCP and 8.41 µM for soman), a rapid response (less than 3 min) and a large Stokes shift (98 nm) along with obvious color changes. Due to its high sensitivity and good selectivity, NMU-1 was successfully applied to image nerve agents in living PC12 cells. Furthermore, NMU-1 was used as a key element to develop chemical warfare agent test paper, which exhibited significant fluorescent changes under hand-held 365-nm UV light upon contact with nerve agents.


Subject(s)
Chemical Warfare Agents , Nerve Agents , Chemical Warfare Agents/analysis , Fluorescent Dyes/chemistry
11.
Int J Biol Macromol ; 201: 93-103, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34973980

ABSTRACT

Hyperbranched polysaccharides (HBPSs) are the main components in cell wall and exopolysaccharide (EPS) of Pleurotus tuber-regium. To enhance the yield of these macromolecules, corn oil at 4% addition exhibited the best effect for production of mycelial biomass at 20.49 g/L and EPS at 0.59 g/L, which was 2.56 folds and 1.90 folds of the control, respectively. The treated hyphae were much thicker with smooth surface, while its cell wall content (43.81 ± 0.02%) was 1.96 times of the control (22.34 ± 0.01%). Moreover, a large number of lipid droplets could be visualized under the view of confocal laser scanning microscopy (CLSM). RNA-seq analysis revealed that corn oil could enter the cells and result in the up-regulation of genes on cell morphology and membrane permeability, as well as the down-regulation on expression level of polysaccharide hydrolase and genes involved in the MAPK pathway, all of which probably contribute to the increase of polysaccharides production.


Subject(s)
Corn Oil , Pleurotus , Biomass , Mycelium/metabolism , Pleurotus/metabolism , Polysaccharides/metabolism
12.
Carbohydr Polym ; 272: 118483, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420742

ABSTRACT

Novel superhydrophobic sodium carboxymethyl cellulose (CMC) modified polyurethane (MPU) was developed as the membrane material for controlled-release fertilizer (CRF) by cross-linking polymerization of 4,4'-diphenylmethane diisocyanate (MDI) and CMC-based modified polyol (CMP) which was made by grafting CMC onto polyether polyol (TMN-450). The modified polyurethane coated fertilizer (MPUCF) was prepared by using MPU as the membrane material through a fluidized bed device. Analysis results of 13C NMR showed that the coatings of PUCF and MPUCF were prepared by connecting hydroxyl to isocyanate groups to form a carbamate. MPU had lower water absorption rates than PU, and MPUCF coating showed excellent hydrophobicity. Scanning electron microscope (SEM) revealed that MPUCF coating surface was much more smooth and flat than that of PUCF. Furthermore, the nitrogen (N) release longevity of MPUCF can increased to 140 days when the coating rate was 5%. It is concluded that MPU was an excellent superhydrophobic coating material for CRF.


Subject(s)
Fertilizers , Polymers , Carboxymethylcellulose Sodium , Hydrophobic and Hydrophilic Interactions , Isocyanates , Polyurethanes , Water/chemistry
13.
Sci Rep ; 11(1): 7511, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33820937

ABSTRACT

The coronary slow flow phenomenon (CSFP) is common in coronary angiography, however its impact on left atrial (LA) function is still controversial. This study aims to evaluate the LA structure and function of patients with CSFP using two-dimensional speckle tracking echocardiography (2D-STE). Consecutive patients scheduled for coronary angiography from January 2016 to September 2017 were enrolled in this study. Patients' demographic data, clinical histories, laboratory and angiographic findings were collected and recorded. Diagnostic criteria for CSFP is based on Beltrame et al. proposed in 2012. Meanwhile 139 patients who have no significant stenosis (≤ 40%) and normal blood flow were selected as control. All patients received an echocardiographic examination 24 h before coronary angiography. LA structure and function were measured with echocardiography and 2D-STE. Our results showed that among the 1,954 patients who had received coronary angiography, 512 patients were included in the analysis after the exclusion criteria was implemented. Of those, 101 patients met the CSFP criteria (5.5%). CSFP is mainly seen in LAD (~ 70%). There was no statistical difference in baseline characteristics between the CSFP group and control group, except for a higher proportion of smokers in the CSFP group (P = 0.001). The percentage of monocytes is an independent risk factor for the occurrence of CSFP (P = 0.036) after binary logistic regression analysis. The LA global longitudinal strain (LA-GLS, represents reservoir functions) decreased and LA strain rate at late diastole (LA-SRa, represents booster function) increased in patients with CSFP compared to the control group (P < 0.05). Correlation test of continuous variables by Pearson test suggested that LA-GLS was negatively correlated with TIMI frame count (TFC). We concluded that the percentage of monocytes is an independent risk factor for the CSFP; the LA reservoir and booster functions were impaired in patients with CSFP; LA-GLS is negatively correlated with TFC.


Subject(s)
Atrial Function, Left/physiology , Coronary Circulation/physiology , Heart Atria/pathology , Heart Atria/physiopathology , No-Reflow Phenomenon/physiopathology , Case-Control Studies , Coronary Angiography , Electrocardiography , Female , Humans , Logistic Models , Male , Middle Aged , No-Reflow Phenomenon/diagnostic imaging
14.
Acta Pharmacol Sin ; 42(12): 2082-2093, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33654219

ABSTRACT

Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 µg/kg in 200 µL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 µg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.


Subject(s)
Acute Lung Injury/therapy , Exosomes/transplantation , Mesenchymal Stem Cells/cytology , Signal Transduction/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Apoptosis/physiology , Cell Line , Epithelial Cells/metabolism , Gene Knockout Techniques , Lung/metabolism , Lung/pathology , Male , Mice, Inbred ICR , Mice, Knockout , Mustard Gas , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , YAP-Signaling Proteins/metabolism
15.
J Hazard Mater ; 410: 124811, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33450470

ABSTRACT

Nerve agents are among the world's deadliest poisons, and the target enzyme is acetylcholinesterase (AChE). To better diagnosis nerve agent poisonings, a reliable diagnostic method for both nerve agents and AChE is desirable. Herein, we synthesized a series of fluorescent sensors for both real nerve agents and acetylcholinesterase activity detection. Among these sensors, HBQ-AE exhibited a fast response rate (within 10 s for nerve agent and 8 min for AChE), good sensitivity (the limit of detection is 6 nM and 0.2 U/mL) and a high off/on contrast. To the best of our knowledge, HBQ-AE is the first fluorescence sensor for nerve agents and AChE activity detection. The fluorescent change of HBQ-AE from nonfluorescence to blue fluorescence (nerve agent) or orange fluorescence (AChE) by excitation at 365 nm can be easily observed with the naked eye. HBQ-AE was successfully applied to image nerve agents and AChE activity in living cells. Moreover, HBQ-AE is the vital member to construct a test paper that can be employed to detect and diagnose chemical warfare agents.


Subject(s)
Chemical Warfare Agents , Nerve Agents , Acetylcholinesterase , Cholinesterase Inhibitors , Spectrometry, Fluorescence
16.
Food Chem ; 337: 127802, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32795851

ABSTRACT

Deoxynivalenol (DON) and T-2 toxin are major trichothecenes contaminated in cereals, which might bring harmful effects to humans. In this research, mixed anti-DON and anti-T-2 mAb were used for multiple immunoaffinity columns (mIACs) preparation. Under the optimal conditions, column capacities were tested at 1280 ng/mL for DON and 1160 ng/mL for T-2 toxin. Regeneration investigation showed mIACs capacities were over 510 ng/mL for DON and 440 ng/mL for T-2 toxin in 10 recycle usages. Good performances were obtained when applying mIACs purification coupled UHPLC-MS/MS for spiked samples with limit of detection at 3-13 µg/kg and mean recoveries at 79.0-97.6%. Applying to estimate the exposure of DON and T-2 toxin in commercial samples, maize samples were 100% DON positive and rice samples were 40% DON positive while T-2 toxin was negative in all tested samples. The proposed method is reliable and suitable for monitoring DON and T-2 toxin in cereal samples.


Subject(s)
Chromatography, Affinity/methods , Edible Grain/chemistry , Food Contamination/analysis , T-2 Toxin/analysis , Tandem Mass Spectrometry/methods , Trichothecenes/analysis , Limit of Detection , Zea mays/chemistry
17.
Sci Rep ; 10(1): 18207, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097767

ABSTRACT

Mineral soil conditioners (MSCs) are used to regulate soil acidity and improve soil quality; they are often made in sintering potassium feldspar, limestone, or dolomite, and are alkaline materials rich in silicon, calcium, potassium, and magnesium. The key point of how to apply them into farmlands is their ability to adjust soil acidity and the MSCs requirement (MSCR). In this study, inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis and X-ray diffraction (XRD) were firstly used to determine the elemental and phase compositions of the MSCs in order to establish its equivalent relationship for the depletion of soil activity (H+) and its conversion relationship with CaCO3. Secondly, the soil culture method and the improved Shoemaker Mclean Peatt-Double Buffer (SMP-DB) method were compared using a group of 14 typical acid soils in MSCR. It is investigated that the MSCs contained four alkali/alkaline earth-metal elements: Ca, Mg, K, and Na in the bound aluminosilicate form (Ca2MgAlSi2O7, Ca3(SiO3)3, KAlSiO4, and KAlSi2O6); and the depletion of 2.31 mol of H+ required 100 g of MSCs and the amount of Si-Ca-K-Mg MSC needed to deplete the same quantity of H+ was only 0.87 times that of CaCO3. Based on the calculations by using the SMP-DB method and the soil culture method, the MSCR for treating the 14 typical acid soils were in the range of 0.56-8.27 t hm-2 and 0-10.8 t hm-2, respectively. Data from both methods were highly correlated with each other and there was a good linear correlation between them, and the equation: [Formula: see text] could be used to calculate the MSCs requirement. The recommended MSCR was approximately 4-8, 2-6, and 1-3 t hm-2 when soil pH < 4.50, 4.50 < pH < 5.50, and pH > 5.50, respectively. The experimental and computational methods established in this study could serve as the scientific basis and theoretical guidance for the production and agricultural use of MSCs.

18.
Materials (Basel) ; 13(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947794

ABSTRACT

We studied the influence of aging temperature on microstructure and mechanical properties in an ultra-low carbon Cu bearing steel in the present study. During the aging process, a continuous recovery of matrix associated with formation and growth of Cu precipitates could be observed during aging processes, exerting significant effects on the mechanical properties of the steel. At aging temperature below 600 °C, the mechanical properties were dominated by the precipitation strengthening effect, leading to excessive matrix strengthening and poor low-temperature toughness. Conversely, steel aged at temperatures above 650 °C exhibited an extraordinary improvement in toughness at the expense of strength, which can be attributed to the synergistic effects of softening matrix, coarsened Cu precipitates and formation of reverted austenite. After aging at 650 °C, reverted austenite formed at the lath boundaries. Increasing the aging temperature to 700 °C lowered the thermal stability of reverted austenite, consequently, the reverted austenite was partially transformed to fresh martensite. After aging at 650 °C for 0.5 h, the mechanical properties were optimized as follows-yield strength = 854 MPa, tensile strength = 990 MPa, elongation = 19.8% and Charpy impact energy = 132 J at -80 °C.

19.
Materials (Basel) ; 13(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824498

ABSTRACT

This study elucidated the structure-property relationship in a Cu-bearing marine engineering steel that was water cooled and then aged at 500 °C for 0.5-3 h. The microstructural features, tensile properties and impact properties were comparatively investigated as a function of aging time. When the aging period was increased, the Cu precipitates underwent coarsening, and a stable face-centered cubic (fcc) formation occurred. Additionally, the tensile properties were significantly improved at the expense of low temperature toughness, which can be attributed to the presence of nano-sized Cu precipitates. The increment of yield strength mainly derived from Cu precipitate-dislocation interaction strengthening effects (232 MPa for 1 h and 199 MPa for 3 h.) during aging process. Therefore, optimization of mechanical properties was achieved by controlling the parameters of aging process. The peak age hardening condition (i.e., at 500 °C for 1 h) resulted in the yield strength of 755 MPa, tensile strength of 812 MPa, elongation of 26.3% and impact energy of 78 J at -80 °C.

20.
Materials (Basel) ; 13(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823534

ABSTRACT

We studied the effect of Cu addition on the hardness of ultra-low carbon steels heat treated with different cooling rates using thermal simulation techniques. The microstructural evolution, Cu precipitation behaviors, variations of Vickers hardness and nano-hardness are comparatively studied for Cu-free and Cu-bearing steels. The microstructure transforms from ferritic structure to ferritic + bainitic structure as a function of cooling rate for the two steels. Interphase precipitation occurs in association with the formation of ferritic structure at slower cooling rates of 0.05 and 0.2 °C/s. Coarsening of Cu precipitates occurs at 0.05 °C/s, leading to lower precipitation strengthening. As the cooling rate increases to 0.2 °C/s, the interphase and dispersive precipitation strengthening effects are increased by 63.9 and 50.0 MPa, respectively. Cu precipitation is partially constrained at cooling rate of 5 °C/s, resulting in poor nano-hardness and Young's Modulus. In comparison with Cu-free steel, the peak Vickers hardness, nano-hardness and Young's Modulus are increased by 56 HV, 0.61 GPa and 55.5 GPa at a cooling rate of 0.2 °C/s, respectively. These values are apparently higher than those of Cu-free steel, indicating that Cu addition in steels can effectively strengthen the matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...