Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174362, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955280

ABSTRACT

Niobium has been considered to be enriched in high-Al-Ga in north China coal and coal-hosted Nb(Ta)-Zr(Hf)-REY-Ga polymetallic deposits in the southwestern region of China. However, modes of occurrence and influencing factors of Nb in Al-Ga-rich coal in North China are rarely reported. This study investigated the distribution characteristics of Nb in the No.6 high-Al-Ga coal of the Jungar Coalfield in North China. The in-situ Nb concentration of selected minerals, including kaolinite, Ti-oxides, boehmite, and zircon, is further quantitatively characterized based on multiscale in-situ elemental analyses, including SEM-EDS and LA-ICP-MS spot and mapping analyses. The results showed that Nb is rich in the tonstein and mudstone partings among bulk samples and is highly concentrated in Ti-oxides, followed by zircon among the minerals. A certain amount of Nb is associated with kaolinite and boehmite with different modes of occurrence: vermicular kaolinite (65.94 ppm) > clastic kaolinite (25.43 ppm) > altered K-bearing kaolinite (18.11 ppm) > cryptocrystalline kaolinite (17.03 ppm) > clastic boehmite (9.08 ppm) > cryptocrystalline boehmite (7.97 ppm). The Nb-Nb/Ta and Zr/Hf-Nb/Ta ratios suggest that the primary source of Nb in the No.6 coal is the altered felsic volcanic ash and bauxite deposit. The high-Fe concentration in Ti-bearing minerals indicates that anatase may originate from the alteration of ilmenite with a process of Fe depletion and Nb enrichment. The enrichment of Nb in coal is attributed to the substitution of Nb for Ti in isomorphism in all Ti-oxides, high-Ti, and Ti-bearing minerals.

2.
Anal Chem ; 96(22): 9294-9301, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758734

ABSTRACT

Despite the high gain in peak capacity, online comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry (LC × LC-HRMS) has not yet been widely applied to the analysis of complex protein digests. One reason is the method's reduced sensitivity which can be linked to the high flow rates of the second separation dimension (2D). This results in higher dilution factors and the need for flow splitters to couple to ESI-MS. This study reports proof-of-principle results of the development of an RPLC × RPLC-HRMS method using parallel gradients (2D flow rate of 0.7 mL min-1) and its comparison to shifted gradient methods (2D of 1.4 mL min-1) for the analysis of complex digests using HRMS (QExactive-Plus MS). Shifted and parallel gradients resulted in high surface coverage (SC) and effective peak capacity (SC of 0.6226 and 0.7439 and effective peak capacity of 779 and 757 in 60 min). When applied to a cell line digest sample, parallel gradients allowed higher sensitivity (e.g., average MS intensity increased by a factor of 3), allowing for a higher number of identifications (e.g., about 2600 vs 3900 peptides). In addition, reducing the modulation time to 10 s significantly increased the number of MS/MS events that could be performed. When compared to a 1D-RPLC method, parallel RPLC × RPLC-HRMS methods offered a higher separation performance (FHWH from 0.12 to 0.018 min) with limited sensitivity losses resulting in an increase of analyte identifications (e.g., about 6000 vs 7000 peptides and 1500 vs 1990 proteins).


Subject(s)
Mass Spectrometry , Proteins , Chromatography, Liquid/methods , Proteins/analysis , Proteins/metabolism , Humans , Mass Spectrometry/methods
3.
Small ; 20(27): e2400064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530072

ABSTRACT

Achieving high gas selectivity is challenging when dealing with gas pairs of similar size and physiochemical properties. The "molecular trapdoor" mechanism discovered in zeolites holds promise for highly selective gas adsorption separation but faces limitations like constrained pore volume and slow adsorption kinetics. To address these challenges, for the first time, a flexible metal-organic framework (MOF) featuring 1D channels and functioning as a "molecular trapdoor" material is intoduced. Extra-framework anions act as "gate-keeping" groups at the narrowest points of channels, permitting gas admissions via gate opening induced by thermal/pressure stimuli and guest interactions. Different guest molecules induce varied energy barriers for anion movement, enabling gas separation based on distinct threshold temperatures for gas admission. The flexible framework of Pytpy MOFs, featuring swelling structure with rotatable pyridine rings, facilitates faster gas adsorption than zeolite. Analyzing anion properties of Pytpy MOFs reveals a guiding principle for selecting anions to tailor threshold gas admission. This study not only overcomes the kinetic limitations related to gas admission in the "molecular trapdoor" zeolites but also underscores the potential of developing MOFs as molecular trapdoor adsorbents, providing valuable insights for designing ionic MOFs tailored to diverse gas separation applications.

4.
Heliyon ; 10(5): e26979, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463787

ABSTRACT

Semen Ziziphi Spinosae oil (SZSO) is a natural vegetable oil extracted from Semen Ziziphi Spinosae, a traditional Chinese medicine renowned for its sleep-promoting properties, while the mechanisms are still unclear. Our findings revealed that the terpenoids present in SZSO (T-SZSO) were identified as the active components responsible for promoting sleep. Network pharmacological analysis suggested that T-SZSO targeted different sleep-aid pathways to varying degrees and exhibited potential for preventing central nervous system diseases. Notably, lupeol and betulinicaldehyde exhibited more pronounced effects. Additionally, T-SZSO significantly elevated serotonin levels, enhanced gamma-aminobutyric acid (GABA) synthesis, promoted GABA A receptor expression, and decreased glutamate and norepinephrine expression levels. Moreover, T-SZSO was found to downregulate IL-1ß expression while upregulating superoxide dismutase and inducible nitric oxide synthase levels. In conclusion, this study presents the first investigation into the pharmacological basis of SZSO in promoting sleep and highlights the potential of nature food in improving suboptimal health conditions.

5.
Redox Rep ; 29(1): 2305036, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38390941

ABSTRACT

OBJECTIVE: Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS: We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS: The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS: Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.


Subject(s)
Angelica , Antioxidants , Mice , Animals , Angelica/chemistry , Molecular Docking Simulation , Dietary Supplements , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
6.
Plant Physiol Biochem ; 204: 108133, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37883915

ABSTRACT

Plant plasma membrane (PM) H+-ATPases are essential pumps involved in multiple physiological processes. They play a significant role in regulating pH homeostasis and membrane potential by generating the electrochemical gradient of the proton across the plasma membrane. However, information on soybean PM H+-ATPase is still limited. In this study, we conducted the evolutionary analysis of PM H+-ATPases in land plants and investigated the subfamily classification and whole genome duplication of PM H+-ATPases in angiosperms. We further characterized the extremely high conservation of the soybean PM H+-ATPase family in terms of gene structure, domain architecture, and protein sequence identity. Using the yeast system, we confirmed the highly conserved biochemical characteristics (14-3-3 binding affinity and pump activity) of soybean PM H+-ATPases and their conserved function in enhancing tolerance to high pH and NaHCO3 stresses. Meanwhile, our results also revealed their divergence in the transcriptional expression in different tissues and under sodium bicarbonate stress. Finally, the function of soybean PM H+-ATPases in conferring sodium bicarbonate tolerance was validated using transgenic Arabidopsis. Together, these results conclude that the soybean PM H+-ATPase is evolutionarily conserved and positively regulates the response to sodium bicarbonate stress.


Subject(s)
Arabidopsis , Glycine max , Glycine max/genetics , Glycine max/metabolism , Sodium Bicarbonate/pharmacology , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Biological Transport , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Plant
7.
Plant Cell Rep ; 42(12): 2011-2022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812280

ABSTRACT

KEY MESSAGE: OsERF096 negatively regulates rice cold tolerance and mediates IAA biosynthesis and signaling under cold stress. The APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors play important roles in regulating plant tolerance to abiotic stress. OsERF096 was previously identified as a direct target of miR1320, and was suggested to negatively regulate rice cold tolerance. In this study, we performed RNA-sequencing and targeted metabolomics assays to reveal the regulatory roles of OsERF096 in cold stress response. GO and KEGG analysis of differentially expressed genes showed that the starch and sucrose metabolism, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly enriched. Quantification analysis confirmed a significant difference in sugar contents among WT and OsERF096 transgenic lines under cold treatment. Targeted metabolomics analysis uncovered that IAA accumulation and signaling were modified by OsERF096 in response to cold stress. Expectedly, qRT-PCR assays confirmed significant OsIAAs and OsARFs expression changes in OsERF096 transgenic lines. Finally, we identified three targets of OsERF096 based on RNA-seq, qRT-PCR, and dual-LUC assays. In summary, these results revealed the multiple regulatory roles of OsERF096 in cold stress response.


Subject(s)
Oryza , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Cold-Shock Response/genetics , Oryza/genetics , Oryza/metabolism , Gene Expression Regulation, Plant , Ethylenes , Plant Proteins/genetics , Plant Proteins/metabolism
8.
RSC Adv ; 13(29): 20351-20364, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37448779

ABSTRACT

Studying diaryl sulfides and benzothiazoles is important in organic synthesis because numerous natural and medicinal products contain these scaffolds. Over the past few years, research on the synthesis of compounds containing benzothiazole-sulfide aryls, as important biological molecules, has received significant attention. Multicomponent reactions are the most popular strategy for performing difficult reactions and the synthesis of complexed molecules such as benzothiazole-sulfide aryls. In this work, CuI was successfully immobilized on the surface of magnetic Fe3O4 nanoparticles modified with aniline and 4-aminobenzoic acid [Fe3O4@ABA-Aniline-CuI nanocomposite] and its catalytic activity was investigated in the preparation of a broad range of benzothiazole-sulfide aryls and heteroaryls through the one-pot three-component reactions of 2-iodoaniline with carbon disulfide and aryl or heteroaryl iodides in the presence of KOAc as base in PEG-400 as solvent. TEM and SEM images revealed that the shape of the Fe3O4@ABA-Aniline-CuI particles is spherical and the size of the particles is approximately between 12-25 nanometers.

9.
Int J Mol Sci ; 24(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37445842

ABSTRACT

Mannose receptor, as a member of the C-type lectin superfamily, is a non-canonical pattern recognition receptor that can internalize pathogen-associated ligands and activate intracellular signaling. Here, a mannose receptor gene, LvMR, was identified from the Pacific white shrimp Litopenaeus vannamei. LvMR encoded a signal peptide, a fibronectin type II (FN II) domain, and two carbohydrate-recognition domains (CRDs) with special EPS and FND motifs. LvMR transcripts were mainly detected in the hepatopancreas, and presented a time-dependent response after pathogen challenge. The recombinant LvMR (rLvMR) could bind to various PAMPs and agglutinate microorganisms in a Ca2+-dependent manner with strong binding ability to D-mannose and N-acetyl sugars. The knockdown of LvMR enhanced the expression of most NF-κB pathway genes, inflammation and redox genes, while it had no obvious effect on the transcription of most phagocytosis genes. Moreover, the knockdown of LvMR caused an increase in reactive oxygen species (ROS) content and inducible nitric oxide synthase (iNOS) activity in the hepatopancreas after Vibrio parahaemolyticus infection. All these results indicate that LvMR might perform as a PRR in immune recognition and a negative regulator of inflammation during bacterial infection.


Subject(s)
Mannose Receptor , Penaeidae , Animals , Immunity, Innate , NF-kappa B/genetics , NF-kappa B/metabolism , Lectins, C-Type/metabolism , Inflammation/genetics , Arthropod Proteins/genetics
10.
mSystems ; 8(4): e0006723, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37358285

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) has caused a huge economic loss to shrimp aquaculture. Vibrio parahaemolyticus (VpAHPND) is regarded as a major causative agent of AHPND in the Pacific white shrimp Litopenaeus vannamei. However, knowledge about how shrimp resist to AHPND is very limited. In order to learn the molecular mechanisms underlying AHPND resistance of shrimp, comparison between disease-resistant family and susceptible family of L. vannamei were performed at transcriptional and metabolic levels. Integrated analysis of transcriptomics and metabolomics on hepatopancreas of shrimp, the target tissue of VpAHPND, showed that significant differences existed between resistant family and susceptible family of shrimp. The susceptible family showed higher level of glycolysis, serine-glycine metabolism, purine and pyrimidine metabolism, but lower level of betaine-homocysteine metabolism in the hepatopancreas in comparison with the resistant family without VpAHPND infection. Curiously, VpAHPND infection induced up-regulation of glycolysis, serine-glycine metabolism, purine metabolism, pyrimidine metabolism, and pentose phosphate pathway, and down-regulation of betaine-homocysteine metabolism in resistant family. In addition, arachidonic acid metabolism and some immune pathways, like NF-κB and cAMP pathways, were up-regulated in the resistant family after VpAHPND infection. In contrast, amino acid catabolism boosted via PEPCK-mediated TCA cycle flux was activated in the susceptible family after VpAHPND infection. These differences in transcriptome and metabolome between resistant family and susceptible family might contribute to the resistance of shrimp to bacteria. IMPORTANCE Vibrio parahaemolyticus (VpAHPND) is a major aquatic pathogen causing acute hepatopancreatic necrosis disease (AHPND) and leads to a huge economic loss to shrimp aquaculture. Despite the recent development of controlling culture environment, disease resistant broodstock breeding is still a sustainable approach for aquatic disease control. Metabolic changes occurred during VpAHPND infection, but knowledge about the metabolism in resistance to AHPND is very limited. Integrated analysis of transcriptome and metabolome revealed the basal metabolic differences exhibited between disease-resistant and susceptible shrimp. Amino acid catabolism might contribute to the pathogenesis of VpAHPND and arachidonic acid metabolism might be responsible for the resistance phenotype. This study will help to enlighten the metabolic and molecular mechanisms underlying shrimp resistance to AHPND. Also, the key genes and metabolites of amino acid and arachidonic acid pathway identified in this study will be applied for disease resistance improvement in the shrimp culture industry.


Subject(s)
Disease Resistance , Penaeidae , Animals , Disease Resistance/genetics , Transcriptome/genetics , Arthropod Proteins/genetics , Arachidonic Acid , Betaine , Metabolomics , Penaeidae/genetics , Necrosis , Pyrimidines , Glycine/genetics
11.
Front Immunol ; 14: 1150628, 2023.
Article in English | MEDLINE | ID: mdl-37143674

ABSTRACT

Selective breeding for acute hepatopancreatic necrosis disease (AHPND) resistant shrimp is an effective way to deal with heavy losses to shrimp aquaculture caused by AHPND. However, knowledge about the molecular mechanism of susceptibility or resistance to AHPND is very limited. We herein performed a comparative transcriptomic analysis of gill tissue between AHPND susceptible and resistant families of the white Pacific shrimp Litopenaeus vannamei during Vibrio parahaemolyticus (VPAHPND) infection. A total of 5,013 genes that were differentially expressed between the two families at 0 and 6 h post-infection, and 1,124 DEGs were shared for both two time points. Both GO and KEGG analyses in each or two time point's comparisons showed DEGs involved in endocytosis, protein synthesis and cell inflammation were significantly enriched. Several immune DEGs including PRRs, antioxidants and AMPs were also identified. The susceptible shrimp showed enhanced endocytosis, higher aminoacyl-tRNA ligase activity and occurrence of inflammatory response, while the resistant shrimp had much more strong ability in ribosome biogenesis, antioxidant activity and pathogen recognition and clearance. These genes and processes were mostly associated with mTORC1 signaling pathway, which could reflect differences in cell growth, metabolism and immune response between the two families. Our findings indicate a close link between mTORC1 signaling-related genes and Vibrio-resistance phenotype of shrimp, and provide new clues for further research on resistance strategy of shrimp to AHPND.


Subject(s)
Immunity, Innate , Transcriptome , Animals , Immunity, Innate/genetics , Gills/metabolism , Arthropod Proteins , Signal Transduction , Crustacea/metabolism , Necrosis
12.
J Hazard Mater ; 456: 131632, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37210785

ABSTRACT

The dense surface passivation layer on zero-valent iron (ZVI) restricts its efficiency for water decontamination, causing a poor economy and waste of resources. Herein, we found that the ZVI on Fe-Mn biochar could afford a high electron-donating efficiency for the Cr(VI) reduction and immobilization. Over 78.0% of Fe in the Fe-Mn biochar was used for the Cr(VI) reduction and immobilization, i.e., 56.2 - 161.7 times higher than the commercial ZVI (0.5%) and modified ZVI (0.9 -1.3%), indicating that the unique ZVI species in Fe-Mn biochar offered an outstanding Fe utilization efficiency. We proposed that oxygen atoms in the FeO in the FeMnO2 precursor were removed during pyrolysis with biochar while the MnO skeleton was preserved, forming the embedded ZVI clusters within Fe-Mn oxide. The unique structure inhibited the formation of the Fe-Cr complex on Fe(0), which would facilitate the electron transfer between core Fe(0) and Cr(VI). Moreover, the surface FeMnO2 inhibited the diffusion of Fe and facilitated its affinity with pollutants, thus supporting higher efficiency for pollutant immobilization. The preserved performance of Fe-Mn biochar was proved in industrial wastewater and after long-term oxidation process, and the economic benefit was evaluated. This work provides a new approach for developing active ZVI-based materials with high Fe utilization efficiency and economics for water pollution control.

13.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768207

ABSTRACT

The UBiA genes encode a large class of isopentenyltransferases, which are involved in the synthesis of secondary metabolites such as chlorophyll and vitamin E. They performed important functions in the whole plant's growth and development. Current studies on UBiA genes were not comprehensive enough, especially for sunflower UBiA genes. In this study, 10 HaUBiAs were identified by domain analysis these HaUBiAs had five major conserved domains and were unevenly distributed on six chromosomes. By constructing phylogenetic trees, 119 UBiA genes were found in 12 species with different evolutionary levels and divided into five major groups, which contained seven conserved motifs and eight UBiA subsuper family domains. Tissue expression analysis showed that HaUBiAs were highly expressed in the roots, leaves, and seeds. By using promoter analysis, the cis-elements of UBiA genes were mainly in hormone signaling and stress responses. The qRT-PCR results showed that HaUBiA1 and HaUBiA5 responded strongly to abiotic stresses. Under ABA and MeJA treatments, HaUBiA1 significantly upregulated, while HaUBiA5 significantly decreased. Under cold stress, the expression of UBiA1 was significantly upregulated in the roots and stems, while UBiA5 expression was increased only in the leaves. Under anaerobic induction, UBiA1 and UBiA5 were both upregulated in the roots, stems and leaves. In summary, this study systematically classified the UBiA family and identified two abiotic stress candidate genes in the sunflower. It expands the understanding of the UBiA family and provides a theoretical basis for future abiotic stress studies in sunflowers.


Subject(s)
Helianthus , Helianthus/genetics , Helianthus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Stress, Physiological/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant , Multigene Family
14.
Viruses ; 15(1)2023 01 13.
Article in English | MEDLINE | ID: mdl-36680266

ABSTRACT

Hemocytes are essential components of the immune system against invading pathogens in shrimp. Many uncharacterized transcripts exist in hemocytes but the knowledge of them is very limited. In the present study, we identified a novel small protein from the uncharacterized transcripts in hemocytes of Litopenaeus vannamei. This transcript was specifically expressed in hemocytes and encoded a novel secretory protein, which was designated as hemocyte-specific small protein (LvHSSP). The expression level of LvHSSP was significantly up-regulated in the hemocytes of shrimp infected with white spot syndrome virus (WSSV). After knockdown of LvHSSP by RNA interference, the WSSV copy number in shrimp decreased significantly. Conversely, WSSV copy number increased in shrimp when they were infected by WSSV after incubation with recombinant LvHSSP protein. These results suggested that LvHSSP might promote viral infection in shrimp. Immunocytochemical assay showed that the recombinant LvHSSP protein was located on the membrane of hemocytes. Co-IP results showed that LvHSSP could interact with VP26, the main envelope protein of WSSV, suggesting that LvHSSP might mediate WSSV adhesion and entry into host cells by binding to viral envelope protein. Meanwhile, the total hemocyte counts were significantly decreased after LvHSSP knockdown while increased after supplementing with recombinant LvHSSP protein, supporting the idea of hemocytes as the carrier for systemic dissemination of WSSV. This study reported a novel small protein in hemocytes, which modulated the viral infection in shrimp. Our results will enrich the knowledge of invertebrate innate immunity and provide a new field in the study of hemocyte function.


Subject(s)
Viral Envelope Proteins , White spot syndrome virus 1 , Animals , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , White spot syndrome virus 1/genetics , Hemocytes , Immunity, Innate , Recombinant Proteins/genetics
15.
Article in English | MEDLINE | ID: mdl-38623583

ABSTRACT

Closed-loop sleep modulation is an emerging research paradigm to treat sleep disorders and enhance sleep benefits. However, two major barriers hinder the widespread application of this research paradigm. First, subjects often need to be wire-connected to rack-mount instrumentation for data acquisition, which negatively affects sleep quality. Second, conventional real-time sleep stage classification algorithms give limited performance. In this work, we conquer these two limitations by developing a sleep modulation system that supports closed-loop operations on the device. Sleep stage classification is performed using a lightweight deep learning (DL) model accelerated by a low-power field-programmable gate array (FPGA) device. The DL model uses a single channel electroencephalogram (EEG) as input. Two convolutional neural networks (CNNs) are used to capture general and detailed features, and a bidirectional long-short-term memory (LSTM) network is used to capture time-variant sequence features. An 8-bit quantization is used to reduce the computational cost without compromising performance. The DL model has been validated using a public sleep database containing 81 subjects, achieving a state-of-the-art classification accuracy of 85.8% and a F1-score of 79%. The developed model has also shown the potential to be generalized to different channels and input data lengths. Closed-loop in-phase auditory stimulation has been demonstrated on the test bench.

16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430698

ABSTRACT

Glycine max is a calcium-loving crop. The external application of calcium fertilizer is beneficial to the increase of soybean yield. Indeed, calcium is a vital nutrient in plant growth and development. As a core metal ion in signaling transduction, calcium content is maintained in dynamic balance under normal circumstances. Now, eight transporters were found to control the uptake and efflux of calcium. Though these calcium transporters have been identified through genome-wide analysis, only a few of them were functionally verified. Therefore, in this study, we summarized the current knowledge of soybean calcium transporters in structural features, expression characteristics, roles in stress response, and prospects. The above results will be helpful in understanding the function of cellular calcium transport and provide a theoretical basis for elevating soybean yield.


Subject(s)
Calcium , Glycine max , Glycine max/metabolism , Calcium/metabolism , Calcium, Dietary , Membrane Transport Proteins/metabolism , Fertilizers
17.
Front Plant Sci ; 13: 1002302, 2022.
Article in English | MEDLINE | ID: mdl-36340388

ABSTRACT

Soybean is an important grain and oil crop. In China, there is a great contradiction between soybean supply and demand. China has around 100 million ha of salt-alkaline soil, and at least 10 million could be potentially developed for cultivated land. Therefore, it is an effective way to improve soybean production by breeding salt-alkaline-tolerant soybean cultivars. Compared with wild soybean, cultivated soybean has lost a large number of important genes related to environmental adaptation during the long-term domestication and improvement process. Therefore, it is greatly important to identify the salt-alkaline tolerant genes in wild soybean, and investigate the molecular basis of wild soybean tolerance to salt-alkaline stress. In this review, we summarized the current research regarding the salt-alkaline stress response in wild soybean. The genes involved in the ion balance and ROS scavenging in wild soybean were summarized. Meanwhile, we also introduce key protein kinases and transcription factors that were reported to mediate the salt-alkaline stress response in wild soybean. The findings summarized here will facilitate the molecular breeding of salt-alkaline tolerant soybean cultivars.

18.
Int J Mol Sci ; 23(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362389

ABSTRACT

APETALA2/Ethylene Responsive Factor (AP2/ERF) family plays important roles in reproductive development, stress responses and hormone responses in plants. However, AP2/ERF family has not been systematically studied in Dendrobium catenatum. In this study, 120 AP2/ERF family members were identified for the first time in D. catenatum, which were divided into four groups (AP2, RAV, ERF and DREB subfamily) according to phylogenetic analysis. Gene structures and conserved motif analysis showed that each DcAP2/ERF family gene contained at least one AP2 domain, and the distribution of motifs varied among subfamilies. Cis-element analysis indicated that DcAP2/ERF genes contained abundant cis-elements related to hormone signaling and stress response. To further identify potential genes involved in drought stress, 12 genes were selected to detect their expression under drought treatment through qRT-PCR analysis and DcAP2/ERF#96, a nuclear localized ethylene-responsive transcription factor, showed a strong response to PEG treatment. Overexpression of DcAP2/ERF#96 in Arabidopsis showed sensitivity to ABA. Molecular, biochemical and genetic assays indicated that DcAP2ERF#96 interacts with DREB2A and directly inhibits the expression of P5CS1 in response to the ABA signal. Taken together, our study provided a molecular basis for the intensive study of DcAP2/ERF genes and revealed the biological function of DcAP2ERF#96 involved in the ABA signal.


Subject(s)
Arabidopsis , Dendrobium , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Phylogeny , Dendrobium/genetics , Dendrobium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Stress, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Multigene Family , Ethylenes , Hormones
19.
Opt Express ; 30(12): 21028-21043, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224833

ABSTRACT

To detect good quality coronal spectra images, the continuous optimization of stray light suppression techniques for coronagraphs is required. The internal occulter (IO) serves as the main tool for the Internally Occulted Coronagraph to suppress the direct light from the photosphere layer, and thermal stress displacements with thermodynamic properties will overcover the information of the internal corona. In this paper, a reflective distribution function model is established according to Kirchhoff's principle which is based on a ground-based Lyot coronagraph, the aperture is 200 mm, detection wavelength is 637.4 nm (Fe X) and the work field range is ±1.05-2.0 RS (RS is the solar radius), thus the absorption rate is inverted. The irradiance at different positions received by the ground is simulated, and then the temperature change of the occulter during the time of the strongest radiation is calculated. The thermal stress displacement change of the two materials was analyzed by the finite element method. Comparison of the experiment shows that the displacement variation of the conical bottom plane results in losing 0.34% RS corona information for the 2a12-t6 aluminum alloy, and losing 0.11% RS coronal information for oxygen-free copper. This way provides a new idea for the thermodynamic modeling of the IO and the direct light suppression technology in the coronagraph.

20.
J Hazard Mater ; 437: 129373, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35728326

ABSTRACT

The pathogenic microorganisms in water pose a great threat to human health. Photothermal and photothermocatalytic disinfection using nanomaterials (NPs) has offered a promising and effective strategy to address the challenges in solar water disinfection (SODIS), especially in the point-of-use operations. This review aims at providing comprehensive and state-of-the-art knowledge of photothermal-based disinfection by NPs. The fundamentals and principles of photothermal-based disinfection were first introduced. Then, recent advances in developing photothermal/photothermocatalytic catalysts were systematically summarized. The light-to-heat conversion and disinfection performance of a large variety of photothermal materials were presented. Given the complicated mechanisms of photothermal-based disinfection, the attacks from reactive oxygen species and heat, the destruction of bacterial cells, and the antibacterial effects of released metal ions were highlighted. Finally, future challenges and opportunities associated with the development of cost-effective photothermal/photothermocatalytic disinfection systems were outlined. This review will provide guidance in designing future NPs and inspire more research efforts from environmental nano-communities to move towards practical water disinfection operations.


Subject(s)
Nanostructures , Water Purification , Disinfection , Humans , Sunlight , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...