Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int Immunopharmacol ; 135: 112283, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38772299

ABSTRACT

Toll-like receptors (TLRs) play a crucial role in mediating immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), as well as facilitating apoptotic cell (ACs) clearance (efferocytosis), thus contributing significantly to maintaining homeostasis and promoting tissue resolution. In this study, we investigate the impact of TLR agonists on macrophage efferocytosis. Our findings demonstrate that pretreatment with the TLR agonist lipopolysaccharide (LPS) significantly enhances macrophage phagocytic ability, thereby promoting efferocytosis both in vitro and in vivo. Moreover, LPS pretreatment confers tissue protection against damage by augmenting macrophage efferocytic capacity in murine models. Further examination reveals that LPS modulates efferocytosis by upregulating the expression of Tim4.These results underscore the pivotal role of TLR agonists in regulating the efferocytosis process and suggest potential therapeutic avenues for addressing inflammatory diseases. Overall, our study highlights the intricate interplay between LPS pretreatment and efferocytosis in maintaining tissue homeostasis and resolving inflammation.


Subject(s)
Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , Phagocytosis , Animals , Phagocytosis/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Inflammation/drug therapy , Inflammation/immunology , Male , Humans , Apoptosis/drug effects , RAW 264.7 Cells , Membrane Proteins/metabolism , Efferocytosis
2.
Front Immunol ; 15: 1366319, 2024.
Article in English | MEDLINE | ID: mdl-38799464

ABSTRACT

Introduction: Inflammatory bowel disease (IBD) is a chronic disease involving multiple genes, and the current available targeted drugs for IBD only deliver moderate efficacy. Whether there is a single gene that systematically regulates IBD is not yet known. MiR-146a plays a pivotal role in repression of innate immunity, but its function in the intestinal inflammation is sort of controversy, and the genetic regulatory networks regulated by miR-146a in IBD has not been revealed. Methods: RT-qPCR was employed to detect the expression of miR-146a in IBD patients and in a mouse IBD model induced by dextran sulfate sodium (DSS), and then we generated a miR-146a knock-out mouse line with C57/Bl6N background. The disease activity index was scored in DSS-treated miR-146a deficiency mice and their wild type (WT) littermates. Bulk RNA-sequencing, RT-qPCR and immunostaining were done to illustrate the downstream genetic regulatory networks of miR-146a in flamed colon. Finally, the modified miR-146a mimics were used to treat DSS-induced IBD in miR-146a knock-out and WT IBD mice. Results: We showed that the expression of miR-146a in the colon was elevated in dextran sulfate sodium (DSS)-induced IBD mice and patients with IBD. DSS induced dramatic body weight loss and more significant rectal bleeding, shorter colon length, and colitis in miR-146a knock-out mice than WT mice. The miR-146a mimics alleviated DSS-induced symptoms in both miR-146a-/- and WT mice. Further RNA sequencing illustrated that the deficiency of miR-146a de-repressed majority of DSS-induced IBD-related genes that cover multiple genetic regulatory networks in IBD, and supplementation with miR-146a mimics inhibited the expression of many IBD-related genes. Quantitative RT-PCR or immunostaining confirmed that Ccl3, Saa3, Csf3, Lcn2, Serpine1, Serpine2, MMP3, MMP8, MMP10, IL1A, IL1B, IL6, CXCL2, CXCL3, S100A8, S100A9, TRAF6, P65, p-P65, and IRAK1 were regulated by miR-146a in DSS induced IBD. Among them, MMP3, MMP10, IL6, IL1B, S100A8, S100A9, SERPINE1, CSF3, and IL1A were involved in the active stage of IBD in humans. Discussion: Our date demonstrated that miR-146a acts as a top regulator in C57/BL6N mice to systematically repress multiple genetic regulatory networks involved in immune response of intestine to environment factors, and combinatory treatment with miR-146a-5p and miR-146a-3p mimics attenuates DSS-induced IBD in mice through down-regulating multiple genetic regulatory networks which were increased in colon tissue from IBD patients. Our findings suggests that miR-146a is a top inhibitor of IBD, and that miR-146a-5p and miR-146a-3p mimics might be potential drug for IBD.


Subject(s)
Dextran Sulfate , Disease Models, Animal , Gene Regulatory Networks , Inflammatory Bowel Diseases , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs , Animals , MicroRNAs/genetics , Mice , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Humans , Male , Gene Expression Regulation , Colitis/genetics , Colitis/chemically induced , Female , Colon/metabolism , Colon/pathology
3.
Int Immunopharmacol ; 130: 111678, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38368773

ABSTRACT

Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Aldosterone/metabolism , Eplerenone , Mineralocorticoids/metabolism , Immunity, Innate , Reactive Oxygen Species/metabolism , Lymphocytes , Colitis/chemically induced , Colitis/drug therapy , Inflammation/metabolism
4.
ACS Appl Mater Interfaces ; 15(22): 26241-26251, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232130

ABSTRACT

Synergetic photothermal/photodynamic/chemotherapy receives significant attention for precise in vivo cancer treatment. Despite plenty of encouraging photosensitizers explored, integrated nanoagents with multiple functions are still highly desired. In this study, novel nanocomposites coupling black phosphorus (BP) nanosheets, gold nanorods (AuNRs), carbon nanodots (CDs), and doxorubicin (Dox) are prepared. The nanoagents exhibit high antitumor activity on account of their broad light absorption, excellent catalytic ability, and significant photothermal and photodynamic effects. CDs not only emit bright fluorescence for accurate diagnosis and guiding of tumor treatment but also catalyze the generation of ROS for photodynamic therapy (PDT). The released Dox induces apoptosis of cells and increases the levels of H2O2 to promote PDT. AuNRs are the main photothermal therapy (PTT) material that converts light into heat. Moreover, BP can be used to enhance both PTT and PDT efficiencies, and the two therapy modes can be cooperatively reinforced. It is also found that the local immune microenvironment of the tumors is activated. The strategy makes good use of the features of each component. Satisfactory antitumor phenomena are well confirmed by in vitro and in vivo results. This study provides new insights into enhanced synergetic therapy, highlighting the great utility of BP-based nanoagents in the field of nanomedicine.


Subject(s)
Nanotubes , Neoplasms , Photochemotherapy , Humans , Carbon/therapeutic use , Cell Line, Tumor , Gold/therapeutic use , Hydrogen Peroxide , Neoplasms/drug therapy , Phosphorus/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Tumor Microenvironment
5.
Cell Death Dis ; 14(5): 327, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193711

ABSTRACT

Epithelial-mesenchymal transition (EMT) is associated with the invasive and metastatic phenotypes in colorectal cancer (CRC). However, the mechanisms underlying EMT in CRC are not completely understood. In this study, we find that HUNK inhibits EMT and metastasis of CRC cells via its substrate GEF-H1 in a kinase-dependent manner. Mechanistically, HUNK directly phosphorylates GEF-H1 at serine 645 (S645) site, which activates RhoA and consequently leads to a cascade of phosphorylation of LIMK-1/CFL-1, thereby stabilizing F-actin and inhibiting EMT. Clinically, the levels of both HUNK expression and phosphorylation S645 of GEH-H1 are not only downregulated in CRC tissues with metastasis compared with that without metastasis, but also positively correlated among these tissues. Our findings highlight the importance of HUNK kinase direct phosphorylation of GEF-H1 in regulation of EMT and metastasis of CRC.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Humans , Phosphorylation/physiology , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Guanine Nucleotide Exchange Factors/genetics , Actins/metabolism , Colorectal Neoplasms/genetics , Cell Line, Tumor , Neoplasm Metastasis , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Protein Serine-Threonine Kinases/metabolism
6.
BMC Neurosci ; 24(1): 10, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721107

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common malignant intracranial tumor with a low survival rate. However, only few drugs responsible for GBM therpies, hence new drug development for it is highly required. The natural product Cudraflavone B (CUB) has been reported to potentially kill a variety of tumor cells. Currently, its anit-cancer effect on GBM still remains unknown. Herein, we investigated whether CUB could affect the proliferation and apoptosis of GBM cells to show anti-GBM potential. RESULTS: CUB selectively inhibited cell viability and induced cell apoptosis by activating the endoplasmic reticulum stress (ER stress) related pathway, as well as harnessing the autophagy-related PI3K/mTOR/LC3B signaling pathway. Typical morphological changes of autophagy were also observed in CUB treated cells by microscope and scanning electron microscope (SEM) examination. 4-Phenylbutyric acid (4-PBA), an ER stress inhibitor, restored the CUB-caused alteration in signaling pathway and morphological change. CONCLUSIONS: Our finding suggests that CUB impaired cell growth and induced cell apoptosis of glioblastoma through ER stress and autophagy-related signaling pathways, and it might be an attractive drug for treatment of GBM.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Autophagy , Apoptosis , Endoplasmic Reticulum Stress
7.
Free Radic Biol Med ; 194: 1-11, 2023 01.
Article in English | MEDLINE | ID: mdl-36436726

ABSTRACT

Glioblastoma is the most lethal intracranial malignant tumor, for which the five-year overall survival rate is approximately 5%. Here we explored the therapeutic combination of vitamin C and plasma-conditioned medium on glioblastoma cells in culture and as subcutaneous or intracranial xenografts in mice. The combination treatment reduced cell viability and proliferation while promoting apoptosis, and the effects were significantly stronger than with either treatment on its own. Similar results were obtained in the two xenograft models. Vitamin C appeared to upregulate aquaporin-3 and enhance the uptake of extracellular H2O2, while the combination treatment increased intracellular levels of reactive oxygen species including H2O2 and activated the JNK signaling pathway. The cytotoxic effects of the combination treatment were partially reversed by the specific JNK signaling inhibitor SP600125. Our results suggest that the combination of vitamin C and plasma-conditioned medium has therapeutic potential against glioblastoma, and they provide mechanistic insights that may help investigate this and other potential therapies in greater depth.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Animals , Mice , Glioblastoma/metabolism , Hydrogen Peroxide/metabolism , Culture Media, Conditioned/pharmacology , Ascorbic Acid/pharmacology , Cell Line, Tumor , Apoptosis , Antineoplastic Agents/pharmacology , Reactive Oxygen Species/metabolism , Vitamins/pharmacology
8.
Front Biosci (Landmark Ed) ; 28(12): 341, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38179762

ABSTRACT

BACKGROUND: Vitexicarpin (VIT), an isoflavone derived from various medicinal herbs, has shown promising anti-tumor activities against multiple cancer cells. However, the understanding of the mechanisms and potential targets of VIT in treating triple-negative breast cancer (TNBC) remains limited. METHODS: The potential VIT targets were searched for in the Super-PRED online database, while the TNBC targets were acquired in the DisGeNET database, and the Veeny database was used to identify the VIT and TNBC targets that overlapped. Then, GO and KEGG enrichment analyses were carried out in the DAVID database. The protein-protein interaction (PPI) network was constructed to acquire the hub targets in the STRING database, and the overall survival analysis of the hub targets was examined in the Kaplan-Meier plotter database. Afterward, molecular docking was performed to evaluate the binding capabilities between VIT and the hub targets. In order to measure the effect of VIT on proliferation, apoptosis, and cell cycle arrest in the TNBC cell lines-MDA-MB-231 and HCC-1937-the Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis were performed. The Western blot and pull-down assays were used to verify the molecular mechanisms by modulating the hub targets. RESULTS: The network pharmacology results identified a total of 37 overlapping genes that were shared by VIT and TNBC. The results of the PPI network and molecular docking analyses showed that HSP90AA1, CREBBP, and HIF-1A were key targets of VIT against TNBC. However, the pull-down results suggested that VIT could directly bind to HSP90AA1 and HIF-1A, yet not to CREBBP. The results of the in vitro tests showed that VIT decreased proliferation and induced apoptosis in MDA-MB-231 and HCC-1937 cells, in a dose-dependent manner, while the cell cycle arrest occurred at the G2 phase. Mechanistically, the Western blot assay demonstrated that VIT decreased the expression of HSP90AA1, CREBBP, and HIF-1A. CONCLUSIONS: VIT inhibited growth and induced apoptosis of TNBC cells by modulating HIF-1A, HSP90AA1, and CREBBP expression. Our findings suggest that VIT is a potential drug for TNBC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Molecular Docking Simulation , Network Pharmacology
9.
Front Oncol ; 12: 917537, 2022.
Article in English | MEDLINE | ID: mdl-36091118

ABSTRACT

Ferroptosis is one of the programmed modes of cell death that has attracted widespread attention recently and is capable of influencing the developmental course and prognosis of many tumors. Glioma is one of the most common primary tumors of the central nervous system, but effective treatment options are very limited. Ferroptosis plays a critical role in the glioma progression, affecting tumor cell proliferation, angiogenesis, tumor necrosis, and shaping the immune-resistant tumor microenvironment. Inducing ferroptosis has emerged as an attractive strategy for glioma. In this paper, we review ferroptosis-related researches on glioma progression and treatment.

10.
J Clin Med ; 11(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806945

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain tumor with high risks of recurrence and mortality. Chemoradiotherapy resistance has been considered a major factor contributing to the extremely poor prognosis of GBM patients. Therefore, there is an urgent need to develop highly effective therapeutic agents. Here, we demonstrate the anti-tumor effect of morusin, a typical prenylated flavonoid, in GBM through in vivo and in vitro models. Morusin showed selective cytotoxicity toward GBM cell lines without harming normal human astrocytes when the concentration was less than 20 µM. Morusin treatment significantly induced apoptosis of GBM cells, accompanied by the activation of endoplasmic reticulum (ER) stress, and the appearance of cytoplasmic vacuolation and autophagosomes in cells. Then, we found the ER stress activation and cytotoxicity of morusin were rescued by ER stress inhibitor 4-PBA. Furthermore, morusin arrested cell cycle at the G1 phase and inhibited cell proliferation of GBM cells through the Akt-mTOR-p70S6K pathway. Dysregulation of ERs and cell cycle in morusin exposed GBM cells were confirmed by RNA-seq analysis. Finally, we demonstrated the combination of morusin and TMZ remarkably enhanced ER stress and displayed a synergistic effect in GBM cells, and suppressed tumor progression in an orthotopic xenograft model. In conclusion, these findings reveal the toxicity of morusin to GBM cells and its ability to enhance drug sensitivity to TMZ, suggesting the potential application value of morusin in the development of therapeutic strategies for human GBM.

11.
Neuro Oncol ; 24(9): 1482-1493, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35287174

ABSTRACT

BACKGROUND: Glioblastoma stem cells (GSCs) and their interplay with tumor-associated macrophages (TAMs) are responsible for malignant growth and tumor recurrence of glioblastoma multiforme (GBM), but the underlying mechanisms are largely unknown. METHODS: Cell viability, stemness, migration, and invasion were measured in GSCs after the knockdown of upstream stimulating factor 1 (USF1). Luciferase assay and chromatin immunoprecipitation qPCR were performed to determine the regulation of CD90 by USF1. Immunohistochemistry and immunofluorescent staining were used to examine the expression of USF1 and GSC markers, as well as the crosstalk between GSCs and TAMs. In addition, the interaction between GSCs and TAMs was confirmed using in vivo GBM models. RESULTS: We show that USF1 promotes malignant glioblastoma phenotypes and GSCs-TAMs physical interaction by inducing CD90 expression. USF1 predicts a poor prognosis for glioma patients and is upregulated in patient-derived GSCs and glioblastoma cell lines. USF1 overexpression increases the proliferation, invasion, and neurosphere formation of GSCs and glioblastoma cell lines, while USF1 knockdown exerts an opposite effect. Further mechanistic studies reveal that USF1 promotes GSC stemness by directly regulating CD90 expression. Importantly, CD90 of GSCs functions as an anchor for physical interaction with macrophages. Additionally, the USF1/CD90 signaling axis supports the GSCs and TAMs adhesion and immunosuppressive feature of TAMs, which in turn enhance the stemness of GSCs. Moreover, the overexpression of CD90 restores the stemness property in USF1 knockdown GSCs and its immunosuppressive microenvironment. CONCLUSIONS: Our findings indicate that the USF1/CD90 axis might be a potential therapeutic target for the treatment of glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/pathology , Glioma/pathology , Humans , Neoplastic Stem Cells/metabolism , Thy-1 Antigens/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages , Upstream Stimulatory Factors/metabolism
12.
Comb Chem High Throughput Screen ; 25(6): 1040-1046, 2022.
Article in English | MEDLINE | ID: mdl-33797361

ABSTRACT

OBJECTIVE: The goal of this study was to investigate the status of FEN1 in colorectal cancer (CRC) and determine the potential correlation between FEN1 expression level and clinicopathological parameters in CRC patients. METHODS: Expression of FEN1 in CRC tissue on tissue microarray was detected using immunohistochemistry (IHC). The relationship between FEN1 expression status and clinicopathologic characteristics of CRC was analyzed by the Chi-square test. The survival data of TCGA Colon Cancer (COAD) were obtained from ucsc xena browser (https://xenabrowser.net/). Patients were separated into higher and lower expression groups by median FEN1 expression. The association with prognosis of CRC patients was determined by Kaplan-Meier survival analysis with Log-rank test. RESULTS: FEN1expression level and cellular localization had wide variability among different individuals; we classified the staining results into four types: both positive in nucleus and cytoplasm, both negative in nucleus and cytoplasm, only positive in the nucleus, only positive in the cytoplasm. Moreover, FEN1 expression status only correlated with patient's metastasis status, and the patients in the NLCL group showed more risk of cancer cell metastasis. CONCLUSION: Our results indicate that FEN1 expression level and cellular localization had wide variability in CRC and is not a promising biomarker in CRC.


Subject(s)
Colorectal Neoplasms , Biomarkers , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Flap Endonucleases , Humans , Kaplan-Meier Estimate
14.
Cell Death Dis ; 12(9): 827, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34480020

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Glioma/pathology , MAP Kinase Signaling System , src-Family Kinases/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line, Tumor , Focal Adhesions/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/diagnostic imaging , Glioma/genetics , HEK293 Cells , Humans , Magnetic Resonance Imaging , Male , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Phosphorylation , Prognosis , Protein Binding , Proto-Oncogene Proteins c-jun/metabolism , Survival Analysis , Up-Regulation/genetics , Wound Healing
15.
Stem Cell Res Ther ; 12(1): 394, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256854

ABSTRACT

BACKGROUND: The tumour microenvironment contributes to chemotherapy resistance in gliomas, and glioma-associated mesenchymal stromal/stem cells (gaMSCs) are important stromal cell components that play multiple roles in tumour progression. However, whether gaMSCs affect chemotherapy resistance to the first-line agent temozolomide (TMZ) remains unclear. Herein, we explored the effect and mechanism of gaMSCs on resistance to TMZ in glioma cells. METHODS: Human glioma cells (cell line U87MG and primary glioblastoma cell line GBM-1) were cultured in conditioned media of gaMSCs and further treated with TMZ. The proliferation, apoptosis and migration of glioma cells were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and wound-healing assays. The expression of FOXS1 in glioma cells was analysed by gene microarray, PCR and Western blotting. Then, FOXS1 expression in glioma cells was up- and downregulated by lentivirus transfection, and markers of the epithelial-mesenchymal transformation (EMT) process were detected. Tumour-bearing nude mice were established with different glioma cells and treated with TMZ to measure tumour size, survival time and Ki-67 expression. Finally, the expression of IL-6 in gaMSC subpopulations and its effects on FOXS1 expression in glioma cells were also investigated. RESULTS: Conditioned media of gaMSCs promoted the proliferation, migration and chemotherapy resistance of glioma cells. The increased expression of FOXS1 and activation of the EMT process in glioma cells under gaMSC-conditioned media were detected. The relationship of FOXS1, EMT and chemotherapy resistance in glioma cells was demonstrated through the regulation of FOXS1 expression in vitro and in vivo. Moreover, FOXS1 expression in glioma cells was increased by secretion of IL-6 mainly from the CD90low gaMSC subpopulation. CONCLUSIONS: CD90low gaMSCs could increase FOXS1 expression in glioma cells by IL-6 secretion, thereby activating epithelial-mesenchymal transition and resistance to TMZ in glioma cells. These results indicate a new role of gaMSCs in chemotherapy resistance and provide novel therapeutic targets.


Subject(s)
Brain Neoplasms , Glioma , Animals , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition , Glioma/drug therapy , Glioma/genetics , Mice , Mice, Nude , Stem Cells , Temozolomide/pharmacology , Tumor Microenvironment
16.
ACS Appl Mater Interfaces ; 13(18): 21653-21660, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33905235

ABSTRACT

Herein, we develop a novel and effective combination nanoplatform for cancer theranostics. Folic acid (FA) is first modified on the photothermal agent of polydopamine (PDA), which possesses excellent near-infrared (NIR) absorbance and thermal conversion features. Temperature-sensitive silver nanoclusters (AgNCs) are then synthesized on the DNA template that also loads the anticancer drug doxorubicin (Dox). After accumulation in cancer cells, PDA generates cytotoxic heat upon excitation of NIR light for photothermal therapy. On the other hand, the temperature increment is able to destroy the template of AgNCs, leading to the fluorescence variation and controlled release of Dox for chemotherapy. The combined nanosystem exhibits outstanding fluorescence tracing, NIR photothermal transduction, as well as chemo drug delivery capabilities. Both in vitro and in vivo results demonstrate excellent tumor growth suppression phenomena and no apparent adverse effects. This research provides a powerful targeted nanoplatform for cancer theranostics, which may have great potential value for future clinical applications.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , DNA/chemistry , Doxorubicin/administration & dosage , Hyperthermia, Induced , Indoles/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Neoplasms/therapy , Polymers/chemistry , Silver/chemistry , Cell Line, Tumor , Combined Modality Therapy , Drug Synergism , Fluorescence , Humans , Neoplasms/drug therapy , Spectroscopy, Near-Infrared , Templates, Genetic
17.
PLoS Biol ; 19(4): e3001231, 2021 04.
Article in English | MEDLINE | ID: mdl-33905418

ABSTRACT

MgtE is a Mg2+ channel conserved in organisms ranging from prokaryotes to eukaryotes, including humans, and plays an important role in Mg2+ homeostasis. The previously determined MgtE structures in the Mg2+-bound, closed-state, and structure-based functional analyses of MgtE revealed that the binding of Mg2+ ions to the MgtE cytoplasmic domain induces channel inactivation to maintain Mg2+ homeostasis. There are no structures of the transmembrane (TM) domain for MgtE in Mg2+-free conditions, and the pore-opening mechanism has thus remained unclear. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the MgtE-Fab complex in the absence of Mg2+ ions. The Mg2+-free MgtE TM domain structure and its comparison with the Mg2+-bound, closed-state structure, together with functional analyses, showed the Mg2+-dependent pore opening of MgtE on the cytoplasmic side and revealed the kink motions of the TM2 and TM5 helices at the glycine residues, which are important for channel activity. Overall, our work provides structure-based mechanistic insights into the channel gating of MgtE.


Subject(s)
Antiporters/chemistry , Bacterial Proteins/chemistry , Ion Channel Gating/physiology , Antiporters/metabolism , Bacterial Proteins/metabolism , Binding Sites/drug effects , Biological Transport , Cryoelectron Microscopy , Crystallography, X-Ray , Cytoplasm/metabolism , Ion Channel Gating/drug effects , Kinetics , Magnesium/metabolism , Magnesium/pharmacology , Models, Molecular , Protein Domains/drug effects , Protein Domains/physiology , Protein Structure, Quaternary , Protein Structure, Secondary , Thermus thermophilus/metabolism
18.
Commun Biol ; 4(1): 366, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742097

ABSTRACT

GFP fusion-based fluorescence-detection size-exclusion chromatography (FSEC) has been widely employed for membrane protein expression screening. However, fused GFP itself may occasionally affect the expression and/or stability of the targeted membrane protein, leading to both false-positive and false-negative results in expression screening. Furthermore, GFP fusion technology is not well suited for some membrane proteins, depending on their membrane topology. Here, we developed an FSEC assay utilizing nanobody (Nb) technology, named FSEC-Nb, in which targeted membrane proteins are fused to a small peptide tag and recombinantly expressed. The whole-cell extracts are solubilized, mixed with anti-peptide Nb fused to GFP for FSEC analysis. FSEC-Nb enables the evaluation of the expression, monodispersity and thermostability of membrane proteins without the need for purification but does not require direct GFP fusion to targeted proteins. Our results show FSEC-Nb as a powerful tool for expression screening of membrane proteins for structural and functional studies.


Subject(s)
Chromatography, Gel , Green Fluorescent Proteins/metabolism , Membrane Proteins/metabolism , Nanotechnology , Peptides/metabolism , Single-Domain Antibodies/immunology , Animals , Cryoelectron Microscopy , Cysteine Loop Ligand-Gated Ion Channel Receptors/genetics , Cysteine Loop Ligand-Gated Ion Channel Receptors/immunology , Cysteine Loop Ligand-Gated Ion Channel Receptors/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Oryzias/genetics , Oryzias/metabolism , Peptides/genetics , Peptides/immunology , Protein Stability , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spectrometry, Fluorescence , Temperature , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
19.
Sci Adv ; 7(7)2021 02.
Article in English | MEDLINE | ID: mdl-33568487

ABSTRACT

The CNNM/CorC family proteins are Mg2+ transporters that are widely distributed in all domains of life. In bacteria, CorC has been implicated in the survival of pathogenic microorganisms. In humans, CNNM proteins are involved in various biological events, such as body absorption/reabsorption of Mg2+ and genetic disorders. Here, we determined the crystal structure of the Mg2+-bound CorC TM domain dimer. Each protomer has a single Mg2+ binding site with a fully dehydrated Mg2+ ion. The residues at the Mg2+ binding site are strictly conserved in both human CNNM2 and CNNM4, and many of these residues are associated with genetic diseases. Furthermore, we determined the structures of the CorC cytoplasmic region containing its regulatory ATP-binding domain. A combination of structural and functional analyses not only revealed the potential interface between the TM and cytoplasmic domains but also showed that ATP binding is important for the Mg2+ export activity of CorC.

20.
Neoplasma ; 68(1): 126-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32880467

ABSTRACT

Glioma is the most common type of brain cancer. Chemotherapy combination with surgery and radiotherapy is a standard treatment for patients. Although there are many advances in glioma therapy, the prognosis of glioma patients has not significantly been improved over the past decades. Hence, there is still an urgent need to develop a new therapy to treat glioma. Cell viability was assessed by CellTiter Blue assay; flow cytometry (FCM) was used for detecting cell apoptosis; ROS detection was detected by ROS Assay; H2O2 detection was performed by hydrogen peroxide detection kits; real-time PCR and WB were used to determine gene expression. Using the glioma cell line U251 and U87, we investigated a possible combination inhibitory effect includes metformin and cold atmospheric plasma (CAP). The combination treatment showed a synergistic inhibitory effect on cell viability, significantly inducing cell apoptosis. Furthermore, we also found H2O2 produced by CAP has an important role in the synergistic inhibitory effect, eliminating H2O2 with catalase reversed the synergistic inhibitory effect. In addition, the transcript and protein levels of c-FOS were robustly increased after co-treated with metformin and CAP. Taken together, we propose that pre-treatment of glioma cells with metformin sensitize tumor cells to CAP, which may serve as a potential therapeutic strategy for glioma.


Subject(s)
Brain Neoplasms , Glioma , Metformin , Plasma Gases , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Glioma/drug therapy , Glioma/pathology , Glioma/therapy , Humans , Hydrogen Peroxide , Metformin/pharmacology , Plasma Gases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...