Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166796, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37666346

ABSTRACT

Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.942 m2 g-1) and pore volume (0.352 cm3 g-1), was synthesized and its role in the efficiency and related mechanism for EGSB reactor to treat chloramphenicol wastewater was verified. The results indicated that synergy effects of GA for Chemical Oxygen Demand (COD) removal (increased by 8.17 %), chloramphenicol (CAP) removal (increased by 4.43 %) and methane production (increased by 70.29 %). Furthermore, GA increased the average particle size of anaerobic granular sludge (AGS) and promoted AGS to secrete more redox active substances. Microbial community analysis revealed that GA increased the relative abundance of functional bacteria and archaea, specifically Syntrophomonas, Geobacter, Methanothrix, and Methanolinea. These microbial species can participate in direct interspecific electron transfer (DIET). This research serves as a theoretical foundation for the application of GA in mitigating the toxic impact of refractory organic substances, such as antibiotics, on microorganisms during anaerobic treatment processes.


Subject(s)
Graphite , Wastewater , Graphite/toxicity , Waste Disposal, Fluid/methods , Chloramphenicol/toxicity , Anaerobiosis , Bioreactors/microbiology , Sewage/microbiology , Methane
2.
Bioresour Technol ; 374: 128737, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36781146

ABSTRACT

Magnetic granular activated carbon (MGAC), a nano-Fe3O4 modified granular activated carbon, was used as the carrier in an anaerobic fluidized-bed membrane bioreactor (AFMBR) to promote domestic wastewater treatment efficiency and alleviate membrane biofouling. Chemical oxygen demand (COD) removal reached 89 ± 2.6% with the effluent concentration of 20 ± 3.9 mg/L in the MGAC-AFMBR, while it was 28 ± 5.2 mg/L in AFMBR at hydraulic retention time (HRT) of 4 h. Total nitrogen (TN) removal was also enhanced by 4.0% with MGAC. An increased proportion of Chloroflexi and Bacteroidetes in the sludge may be responsible for improved treatment performance. MGAC reduced the protein and polysaccharide content in extracellular polymeric substances (EPS) by 9.8% and 8.1%, respectively. Besides, Bacteroidetes and Proteobacteria abundance decreased by 4.0% and 16.6% in the membrane cake layer with MGAC addition. Therefore, the high-quality effluent and low membrane biofouling of AFMBR was sustained by MGAC.


Subject(s)
Wastewater , Water Purification , Waste Disposal, Fluid , Charcoal , Anaerobiosis , Membranes, Artificial , Sewage/microbiology , Bioreactors/microbiology
3.
Chemosphere ; 286(Pt 3): 131840, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34399267

ABSTRACT

Anaerobic digestion technology has been widely used because it has a unique advantage of producing biogas as a renewable energy source. Therefore, several methods were studied to facilitate anaerobic methane production process. Coupling direct voltage and single conductive particles was an effective method to improve anaerobic wastewater treatment efficiency and methane production. However, the enhancement method was limited in this process due to the current of direct voltage or the toxicity of nanoparticles. Therefore, the granular activated carbon loaded with nanoscale zero valent iron (GAC-NZVI) particles prepared by co-precipitation method were added to the anaerobic synthetic wastewater system with direct voltage (0.10 V) to improve the treatment efficiency in this study. GAC-NZVI particles were added into anaerobic system with 0.10 V direct voltage to enhance CH4 production process. The COD removal and total CH4 production were enhanced by 4.22 % and 10.83 % with GAC-NZVI particles. The measurement results of EPS and Fe concentration showed that GAC-NZVI particles promoted the secretion of EPS by microorganisms, which could improve the floc strength of granular sludge. The measurements of conductivity and cyclic voltammetry (CV) showed that particles accelerated the metabolism of microorganism and promoted the electron transfer process. The increasing of Methanothrix and Methanobacterium could strengthen the methanogenesis. The abundances of bacteria and archaea using indirect interspecies electron exchange form (such as H2 or formate transfer microorganisms) were decreased after adding the particles. The results indicated that anaerobic treatment efficiency could be enhanced under the combined action of direct voltage and particles.


Subject(s)
Charcoal , Iron , Anaerobiosis , Bioreactors , Methane , Sewage
4.
Environ Res ; 205: 112537, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34906588

ABSTRACT

Hydrothermal treatment (HT) is a pragmatic approach for pretreatment of kitchen waste (KW). This work investigated the effect of hydrothermal pretreatment (HTP) on the deoiling, desalting and liquid substances transformation of KW. The orthogonal test method was used to study the effects of three factors at five levels, including solid to liquid ratio (A1-5), heating time (B1-5) and hydrothermal temperature (C1-5). The results indicated that the floatable oil content was improved significantly after HTP. The highest floatable oil content was 84.54 mL/kg at the hydrothermal condition of 1/1.5, 20 min and 100 °C, which was 2.42 times higher than the control. The maximum desalination ratio (92.66%) was at A5B1C5 (1/2.5, 5 min, 100 °C), which was 4.48 times higher than control group (No.0) (20.67%). The VFAs concentration was the highest (11441.05 mg/kg) at 1/2.5, 5 min and 100 °C, which increased by 711.03% compared to the No.0 (1410.78 mg/kg). In addition, the maximum TOC value was obtained at 53530.84 mg/kg. After HTP, the acetic acid and butyric acid concentrations of the liquid phase increased, while the ethanol concentration decreased. The contents of T,NH4+-N and organic nitrogen in the liquid phase of the HTP system increased, while NO3--N remained at a low level (4.96-20.48 mg/kg). The range and variance analysis showed that the temperature had the greatest effect on the deoiling and the liquid substances transformation of KW among these three factors, followed by solid to liquid ratio and heating time. Based on the orthogonal experiment, the optimal parameters for KW deoiling were A3 (1/1.5), B4 (25 min) and C5 (100 °C). This work provided a reference for the KW deoiling and hence improve the efficient utilization of KW.


Subject(s)
Temperature
5.
Environ Res ; 197: 111093, 2021 06.
Article in English | MEDLINE | ID: mdl-33812872

ABSTRACT

Understanding the interactions between magnetic particles (MPs) and polyaluminum chloride (PACl) is essential to elucidate the magnetic seeding coagulation (MSC) process. However, little is known about how MPs interact with the different Al species coexisting in the PACl. Here, the relationships among pollutants removal, residual Al distribution, and floc properties were comparatively studied in the MSC and traditional coagulation (TC) processes to address this issue. The response surface analysis indicated that the interaction between PACl and MPs dosages exhibited significant effects on turbidity and DOC removal. Negligible changes of dissolved Al after MPs addition indicated the weak connection between Ala and MPs. The formation of MPs-Alb-HA complexes resulted in the increase of turbidity removal from 90.2% to 96.0% and the reduction of colloidal Al from 0.67 to 0.30 mg L-1. Humic-like components could be adsorbed on MPs forming MPs-HA complexes, which enhanced the DOC removal from 55% to 58.5%. MPs addition produced loose flocs with a small floc fractal dimension value (1.74), so the average size and strength of flocs in the MSC process (425 µm and 49.7%) were lower than that in the TC process (464 µm and 58.3%). The cumulative volume percentage of large flocs (>700 µm) was decreased from 29.7% to 20.7% with MPs addition, indicating the disruption of large flocs and the reproduction of more fragments. The effective separation of these fragments by magnetic attraction maintained the efficient coagulation performance. This study provides new insights into the interaction mechanism of MPs and PACl in the MSC process.


Subject(s)
Humic Substances , Water Purification , Aluminum Hydroxide , Flocculation , Humic Substances/analysis , Kaolin , Magnetic Phenomena
6.
Sci Total Environ ; 760: 143933, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33341639

ABSTRACT

Anaerobic digestion is an effective treatment technology for wastewater. However, long HRT and low CH4 production limit the application of anaerobic treatment. Iron-based materials, carbon-based materials and Fe-C composite particles have been used in anaerobic processes. However, the strengthening effect of Fe-C composite particles on anaerobic systems requires further research. In this study, granular activated carbon (GAC) loaded with nanoscale zero-valent iron (NZVI) was prepared by a co-precipitation method and its morphology was characterized. Different concentrations of GAC-NZVI particles were used in the batch experiment to study the enhancing effect of the anaerobic biological treatment process. The water quality, sludge properties and microbial community were analyzed. The degradation rate of COD and total CH4 production increased by 9.38% and 14.29% with particles at a concentration of 1000 mg/L, respectively. The average methane yield was 169.86 mL CH4/g-COD removed, which was 9.39% higher than that of the control. The measurement results of extracellular polymeric substance (EPS), conductivity, cyclic voltammetry (CV) and Fe concentration indicated that the composite particles showed excellent electrical conductivity and promoted microorganism metabolism, which accelerated the use of substrates and methane generation. The 3-dimensional excitation (Ex) - emission (Em) matrix (3D-EEM) fluorescence spectroscopy of soluble microbial product (SMP) and EPS indicated that the particles could affect the endogenous respiration of microorganisms. Microbial community analysis revealed that the dominant genus Methanothrix (acetoclastic methanogens) increased by 13.32%, which could strengthen acetoclastic methanogenesis and lead to higher CH4 production. The abundance of hydrogenotrophic archaea decreased after the addition of GAC-NZVI. These results provide an alternate method for enhancing anaerobic wastewater treatment using conductive particles.


Subject(s)
Charcoal , Iron , Anaerobiosis , Bioreactors , Extracellular Polymeric Substance Matrix , Methane , Sewage , Water
7.
Chemosphere ; 268: 129363, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360935

ABSTRACT

Magnetic seeding coagulation (MSC) process has been used to accelerate flocs sedimentation with an applied magnetic field, offering large handling capacity and low energy consumption. The interactions of three typical Al species, aluminum chloride (AlCl3), Al13O4(OH)247+ polymer (Al13), and (AlO4)2Al28(OH)5618+ polymer (Al30), with magnetic particles (MPs) were examined to clarify the MSC process. In traditional coagulation (TC) process, the aggregation of primary Ala-dissolved organic matter (DOM) complexes with in-situ-formed polynuclear species generated a large average floc size (226 µm), which was proved to be efficient for DOC removal (52.6%). The weak connections between dissolved Ala-DOM complexes and MPs led to the negligible changes of dissolved Al after seeding with MPs in AlCl3. A significant interaction between MPs and Al13 was observed, in which the MPs-Al13-DOM complexes were proposed to be responsible for the significant improvement of DOC removal (from 47% to 52%) and residual total Al reduction (from 1.05 to 0.27 mg Al L-1) with MPs addition. Al30 produced a lower floc fractal dimension (Df = 1.88) than AlCl3 (2.08) and Al13 (1.99) in the TC process, whereas its floc strength (70.9%) and floc recovery (38.5%) were higher than the others. Although more detached fragments were produced with MPs addition, the effective sedimentation of these fragments with the applied magnetic field led to the decrease of residual turbidity and colloidal Al in Al30. The dependence of coagulation behavior to MPs and different Al species can be applied to guide the application of an effective MSC process.


Subject(s)
Water Purification , Aluminum , Aluminum Chloride , Flocculation , Magnetic Phenomena , Polymers
8.
Sci Total Environ ; 757: 143717, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33220995

ABSTRACT

Magnetic particles (MPs) assisted powdered activated carbon (PAC) is a promising composite material for adsorption removal of micropollutants. The fractional amount of Fe3O4 impacts the balance between adsorption capacity and magnetic property of magnetic activated carbons (MPACs), and therefore it affects the extent of sulfamethoxazole (SMX) removal. Here, five MPACs with different mass ratios of Fe3O4: PAC (1:1, 1:2, 1:4, 1:6, and 1:8) were prepared using a hydrothermal method and characterized by various spectroscopic methods. The spherical shaped MPs were monolayerly deposited on PAC with fewer pores blocked when the mass ratio of Fe3O4 was comparatively low (≤ 20%). MPAC6 (14.3 wt% of Fe3O4) had the best overall performance, with good Langmuir adsorption capacities for SMX (173.0 mg g-1) and excellent magnetic properties (9.0 emu g-1). Corresponding adsorption kinetics fitted well with the pseudo second-order kinetic model. The negative ΔG0 (-25.6 to -27.2 KJ mol-1) and ΔH0 (-9.14 KJ mol-1), and positive ΔS0 (0.55 KJ mol-1 K-1) properties indicated the spontaneous and exothermic nature of the adsorption process accompanied by an increase in entropy. The strong cation-assisted electron donor-acceptor and hydrophobic interactions were contributed to a high extent of SMX removal in the pH range of 2-4. Formation of negative charge-assisted H-bonds was responsible for the adsorption of hydrophilic SMX- on negatively charged MPAC6 in alkaline solution. Desorption and regeneration experiments showed SMX removal was still 92.3% in the 5th cycle. These findings give valuable insights into the interactions between SMX and MPACs and guide for choosing sustainable magnetic adsorbents for environmental applications.

9.
Bioresour Technol ; 315: 123764, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32682259

ABSTRACT

Different voltages were applied to anaerobic treatment to investigate the enhancement effects and the changes of microbial community structure. The results indicated that the best appropriate voltage was 0.10 V, COD removal increased by 16.72% at first 6 h and cumulative CH4 production increased by 23.39%. Average methane yield was 15.69% higher than that of control. The sludge measurements indicated that voltage addition could promote the interspecies electron transfer to produce more methane. The strengthening effect of voltage could be sustained for a short period of time when the voltage was removed. Microbial community analysis revealed that the changes of Methanothrix and Methanolinea resulted in higher biogas production. The increases of Smithella and Geobacter improved the possibility of "electronic syntrophism" between microorganisms and promoted the performance of DIET process. The results would provide the theoretical supports for enhancing the anaerobic treatment efficiency by voltages.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Biofuels , Bioreactors , Methane
SELECTION OF CITATIONS
SEARCH DETAIL
...