Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 469: 134009, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492399

ABSTRACT

Evidence on the effects of internal chemical mixture exposures on biological age is limited. It also remains unclear whether hormone homeostasis and lifestyle factors can modify such a relationship. Based on the Biomarkers for Air Pollutants Exposure (BAPE) study, which involved healthy older adults aged 60-69 years in China, we found that chemical mixture exposures, including metals, polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFASs), phthalates (PAEs), and organophosphate esters (OPEs), were significantly associated with shortened DNAmTL and accelerated SkinBloodClock, in which PFASs and OPEs in blood were the primary contributors to DNAmTL, while metals and PAEs had relatively higher contributions in urine. Furthermore, lower levels of thyroxin appeared to exacerbate the adverse effects of environmental chemicals on epigenetic ageing but relatively higher levels of physical activity had the beneficial impact. These findings may have important implications for the development of healthy ageing strategy and aged care policy, particularly in light of the global acceleration of population ageing.


Subject(s)
Environmental Pollutants , Fluorocarbons , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Thyroid Hormones , Biomarkers , Organophosphates/toxicity , Exercise , Epigenesis, Genetic
2.
Polymers (Basel) ; 16(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38475371

ABSTRACT

By integrating fiber-reinforced composites (FRCs) with Three-dimensional (3D) printing, the flexibility of lightweight structures was promoted while eliminating the mold's limitations. The design of the I-beam configuration was performed according to the equal-strength philosophy. Then, a multi-objective optimization analysis was conducted based on the NSGA-II algorithm. 3D printing was utilized to fabricate I-beams in three kinds of configurations and seven distinct materials. The flexural properties of the primitive (P-type), the designed (D-type), and the optimized (O-type) configurations were verified via three-point bending testing at a speed of 2 mm/min. Further, by combining different reinforcements, including continuous carbon fibers (CCFs), short carbon fibers (SCFs), and short glass fibers (SGFs) and distinct matrices, including polyamides (PAs), and polylactides (PLAs), the 3D-printed I-beams were studied experimentally. The results indicate that designed and optimized I-beams exhibit a 14.46% and 30.05% increase in the stiffness-to-mass ratio and a 7.83% and 40.59% increment in the load-to-mass ratio, respectively. The CCFs and SCFs result in an outstanding accretion in the flexural properties of 3D-printed I-beams, while the accretion is 2926% and 1070% in the stiffness-to-mass ratio and 656.7% and 344.4% in the load-to-mass ratio, respectively. For the matrix, PAs are a superior choice compared to PLAs for enhancing the positive impact of reinforcements.

3.
Nature ; 625(7994): 270-275, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200301

ABSTRACT

Supersolid, an exotic quantum state of matter that consists of particles forming an incompressible solid structure while simultaneously showing superfluidity of zero viscosity1, is one of the long-standing pursuits in fundamental research2,3. Although the initial report of 4He supersolid turned out to be an artefact4, this intriguing quantum matter has inspired enthusiastic investigations into ultracold quantum gases5-8. Nevertheless, the realization of supersolidity in condensed matter remains elusive. Here we find evidence for a quantum magnetic analogue of supersolid-the spin supersolid-in the recently synthesized triangular-lattice antiferromagnet Na2BaCo(PO4)2 (ref. 9). Notably, a giant magnetocaloric effect related to the spin supersolidity is observed in the demagnetization cooling process, manifesting itself as two prominent valley-like regimes, with the lowest temperature attaining below 100 mK. Not only is there an experimentally determined series of critical fields but the demagnetization cooling profile also shows excellent agreement with the theoretical simulations with an easy-axis Heisenberg model. Neutron diffractions also successfully locate the proposed spin supersolid phases by revealing the coexistence of three-sublattice spin solid order and interlayer incommensurability indicative of the spin superfluidity. Thus, our results reveal a strong entropic effect of the spin supersolid phase in a frustrated quantum magnet and open up a viable and promising avenue for applications in sub-kelvin refrigeration, especially in the context of persistent concerns about helium shortages10,11.

4.
Huan Jing Ke Xue ; 44(10): 5800-5812, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827795

ABSTRACT

To explore the effects of long-term tillage on bacterial community structure in different soil layers of dryland wheat fields and its relationship with soil physicochemical properties, a long-term field experiment was conducted from 2016 to 2021 in Wenxi Experimental Demonstration Base of Shanxi Agricultural University, Shanxi Province. We studied the effects of no-tillage (NT), subsoiling-tillage (ST), and deep plowing (DP) on soil physicochemical properties; α and ß diversity of the bacterial community; and dominant and different species of phyla and genera in different soil layers. Additionally, PICRUSt2 was used to predict the metabolic function of soil bacterial community. The results revealed that subsoiling-tillage and deep plowing significantly increased the soil water content in the 20-40 cm soil layer and significantly decreased the soil organic carbon content in the 0-20 cm soil layer compared with that under no-tillage for five consecutive years. Compared with that under deep plowing, subsoiling-tillage significantly increased soil water content, soil organic carbon content, dissolved organic carbon content, and dissolved organic nitrogen content in the 0-20 cm soil layer. Compared with that under no-tillage, subsoiling-tillage and deep plowing increased the α diversity of the soil bacterial community in the 0-40 cm soil layer, and subsoiling-tillage was higher than deep plowing. Compared with that under no-tillage, subsoiling-tillage and deep plowing significantly increased the relative abundances of Acidobacteria and Nitrospirae in the 0-20 cm soil layer and Acidobacteria, Chloroflexi, Gemmatimonadetes, Rokubacteria, GAL15, and Nitrospirae in the 20-40 cm soil layer. Compared with that under no-tillage, subsoiling-tillage and deep plowing significantly increased the relative abundance of Nitrospira in the 0-20 cm soil layer and Rubrobacter and Streptomyces in the 20-40 cm soil layer. Compared with that under deep plowing, subsoiling-tillage significantly increased the relative abundance of Acidobacteria and Gemmatimonadetes in the 0-40 cm soil layer. Redundancy analysis demonstrated that the contents of soil organic carbon, dissolved organic carbon, and dissolved organic nitrogen in the 0-20 cm soil layer exerted positive effects on Actinobacteria and Blastococcus, and the soil water content in the 0-40 cm soil layer exerted positive effects on Acidobacteria, Chloroflexi, and Gemmatimonadetes under subsoiling-tillage. The results of PICRUSt2 prediction showed that subsoiling-tillage and deep plowing significantly increased the relative abundance of amino acid metabolism and the metabolism of cofactors and vitamins but decreased the relative abundance of lipid metabolism of bacterial communities in the 20-40 cm soil layer compared with that under no-tillage. Compared with that under deep plowing, subsoiling-tillage significantly increased the relative abundances of amino acid metabolism in the 0-40 cm soil layer and other amino acid metabolism in the 0-20 cm soil layer. In conclusion, subsoiling-tillage or deep plowing could increase the soil water content, α diversity of the soil bacterial community, and their metabolic capacity in the dryland wheat fields during the summer fallow period. The relative abundance of Acidobacteria and Gemmatimonadetes and the ability of amino acid metabolism of the bacterial community were increased by subsoiling-tillage, and thus the contents of soil dissolved organic carbon and dissolved nitrogen can be increased.


Subject(s)
Soil , Triticum , Humans , Soil/chemistry , Dissolved Organic Matter , Carbon/analysis , Agriculture/methods , Water/analysis , China , Acidobacteria , Amino Acids
5.
Sci Bull (Beijing) ; 68(9): 920-927, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37085398

ABSTRACT

Pursuing efficient thermoelectricity from low-dimensional materials has been highly motivated since the seminal work of Hicks and Dresselhaus. In fact, many superior thermoelectric materials like Bi2Te3, Mg3Sb2/Mg3Bi2 and SnSe are quasi-two-dimensional (q2D), though the advantages of two-dimensionality appear to be diverse and sometimes controversial. Here, we report on a remarkably high thermoelectric performance in TlCu3Te2, which is quasi-one-dimensional (q1D) with a further reduced dimension. The thermoelectric figure of merit zT along its q1D axis amounts to 1.3 (1.5) at 300 (400) K, rivaling the best ever reported at these temperatures. The high thermoelectric performances benefit from, on one hand, large power factors derived from a center-hollowed, pancake-like Fermi pocket with q1D dispersion at the edge of a narrow band gap, and on the other hand, small lattice thermal conductivities caused by the large and anharmonic q1D lattice consisting of heavy, lone-pair-electron bearing (Tl+) and weakly-bonded (Cu+) ions. This compound represents the first bulk material with quasi-uniaxial thermoelectric transport of application level, offering a renewed opportunity to exploit reduced dimensionality for high-performance thermoelectricity.

6.
Innovation (Camb) ; 2(2): 100101, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34557752

ABSTRACT

How magnetism affects the Seebeck effect is an important issue of wide concern in the thermoelectric community but remains elusive. Based on a thermodynamic analysis of spin degrees of freedom on varied d-electron-based ferromagnets and antiferromagnets, we demonstrate that in itinerant or partially itinerant magnetic compounds there exists a generic spin contribution to the Seebeck effect over an extended temperature range from slightly below to well above the magnetic transition temperature. This contribution is interpreted as resulting from transport spin entropy of (partially) delocalized conducting d electrons with strong thermal spin fluctuations, even semiquantitatively in a single-band case, in addition to the conventional diffusion part arising from their kinetic degrees of freedom. As a highly generic effect, the spin-dependent Seebeck effect might pave a feasible way toward efficient "magnetic thermoelectrics."

7.
Chemosphere ; 269: 128763, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33168287

ABSTRACT

Spent resins generated from the nuclear industrial processes are still difficult to be treated and disposed. Fenton-like processes have great application potential in the treatment of spent resins, but the Fenton reaction mechanisms and resin degradation pathways remain challenging. In this study, nanoscale Fe0/Cu0 bimetallic catalysts were prepared and characterized for the Fenton-like degradation of the mixture of cationic and anionic resins. High catalytic property of Fe0/Cu0 bimetallic nanoparticles activated by H2O2 was evaluated, according to the effects of various nanoparticles, temperature, catalyst amount, H2O2 concentration and the mixing ratio of cationic and anionic resins. Combined the shape and color changes of mixed resins with the experimental and calculated characterization results, different degradation difficulty of cationic and anionic resins and their degradation mechanisms were studied. According to the density functional theory calculations of the optimized resin molecules with the Fe0/Cu0 catalyst, the mechanisms of Fenton-like reactions and the degradation of mixed resins through the synergistic effect of Fe and Cu species were proposed. The comprehensive Fenton-like reactions and degradation mechanisms provide new insights to advance the treatment of spent resins and organic polymers by Fenton-like processes.


Subject(s)
Hydrogen Peroxide , Iron , Anion Exchange Resins , Catalysis , Copper , Oxidation-Reduction
8.
Environ Sci Pollut Res Int ; 27(12): 13773-13789, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32034596

ABSTRACT

Nanoscale zero-valent iron (nZVI) was prepared and used as a heterogeneous Fenton-like catalyst for the degradation of nuclear-grade cationic exchange resin. The properties of nZVI before and after reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed that nZVI-H2O2 system exhibited the enhanced degradation of cationic resins, compared with Fe2+-H2O2, Cu0-H2O2, and Fe0/Cu0-H2O2 systems. The effects of initial temperature, nZVI dose, and H2O2 concentration were studied, and the higher temperature and nZVI dose with relatively low H2O2 concentration brought faster degradation rate. The degradation of cationic resins followed the pseudo-first-order kinetics with the apparent activation energy of 53.29 kJ/mol. According to the experimental and calculated infrared and UV-visible spectra, the carbon skeleton of cationic resins was broken with the detachment of benzene ring and the desulfonation of resin polymer by hydroxyl radicals (•OH), generating long-chain alkenes. These intermediates were further oxidized through the hydroxyl substitution, hydrogen abstraction, ring cleavage, or carbonylation reactions, finally forming carboxylic acids remained in solution.


Subject(s)
Iron , Water Pollutants, Chemical/analysis , Cation Exchange Resins , Density Functional Theory , Hydrogen Peroxide , X-Ray Diffraction
9.
J Phys Condens Matter ; 29(48): 485501, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29072578

ABSTRACT

We report on anisotropic electrical, thermal as well as thermoelectric properties of the prototypical Weyl semimetal TaAs. Compared to the normal metallic behavior along a axis, TaAs is more electrically resistive along c axis and exhibits a semiconductor-like resistivity upturn below [Formula: see text] K. In the same temperature range, the thermal conductivity along c axis shows a pronounced maximum of 183 [Formula: see text] characteristic of a crystalline solid, three times higher than that of a axis. The thermoelectric power, while exhibiting enhanced values around room temperature, becomes diminished in a substantial range of temperature ([Formula: see text] K) for both axes. Together with the enhanced Nernst signals, this hints at a dominating ambipolar diffusion as is frequently seen in a compensated semimetal. An in-depth investigation of the anisotropic transport quantities is expected to yield deep insights into the propagating Weyl fermions in TaAs.

10.
Chemphyschem ; 18(14): 1916-1920, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28449298

ABSTRACT

The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics.

11.
Sci Bull (Beijing) ; 62(21): 1439-1444, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-36659393

ABSTRACT

SmB6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap El and high temperature gap Eh) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondo hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ∼4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. Our results raise the new prospect for studying topological electronic states in quantum critical materials settings.

12.
Phys Rev Lett ; 117(21): 216401, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27911533

ABSTRACT

The "failed Kondo insulator" CeNiSn has long been suspected to be a nodal metal, with a node in the hybridization matrix elements. Here we carry out a series of Nernst effect experiments to delineate whether the severely anisotropic magnetotransport coefficients do indeed derive from a nodal metal or can simply be explained by a highly anisotropic Fermi surface. Our experiments reveal that despite an almost twentyfold anisotropy in the Hall conductivity, the large Nernst signal is isotropic. Taken in conjunction with the magnetotransport anisotropy, these results provide strong support for an isotropic Fermi surface with a large anisotropy in quasiparticle mass derived from a nodal hybridization.

13.
Nat Commun ; 6: 7475, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26108283

ABSTRACT

The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.

14.
J Phys Condens Matter ; 27(10): 105601, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25706931

ABSTRACT

The Nernst effect and thermopower of the prototypical Yb-based intermediate valence compound YbAl(3) were investigated. Different to the thermopower whose absolute values are enhanced with increasing temperature and assume a broad maximum at 175 K, the Nernst coefficient of YbAl(3) is enhanced only below T ≈ 75 K. While the two quantities in the heavy-fermion compound CeCu(2)Si(2) were recently found to be related by the anomalous Hall mobility due to the local asymmetric Kondo scattering, this theorem fails when being applied to YbAl(3). Rather, the thermopower of YbAl(3) is well described by a simple narrow-band model. We discuss the reason for this in terms of the intermediate valence nature of YbAl(3) that is conceptually different from the local Kondo physics.

15.
Phys Rev Lett ; 110(21): 216408, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745905

ABSTRACT

A distinctly temperature-dependent Nernst coefficient, ν, which is strongly enhanced over that of LaCu(2)Si(2), is observed between T=2 and 300 K for CeCu(2)Si(2) and Ce(0.8)La(0.2)Cu(2)Si(2). The enhanced ν(T) is determined by the asymmetry of the on-site Kondo (conduction electron -4f electron) scattering rate. Taking into account the measured Hall mobility, µ(H), the highly unusual thermopower, S, of these systems can be semiquantitatively described by S(T)=-ν(T)/µ(H)(T), which explicitly demonstrates that the thermopower originates from the local Kondo scattering process over a wide temperature range from far above to well below the coherence temperature (≈20 K for CeCu(2)Si(2)). Our results suggest that the Nernst effect can act as a proper probe of local charge-carrier scattering. This promises to impact on exploring the unconventional enhancement of the thermopower in correlated materials suited for potential applications.

16.
Nature ; 484(7395): 493-7, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22538612

ABSTRACT

A quantum critical point (QCP) arises when a continuous transition between competing phases occurs at zero temperature. Collective excitations at magnetic QCPs give rise to metallic properties that strongly deviate from the expectations of Landau's Fermi-liquid description, which is the standard theory of electron correlations in metals. Central to this theory is the notion of quasiparticles, electronic excitations that possess the quantum numbers of the non-interacting electrons. Here we report measurements of thermal and electrical transport across the field-induced magnetic QCP in the heavy-fermion compound YbRh(2)Si(2) (refs 2, 3). We show that the ratio of the thermal to electrical conductivities at the zero-temperature limit obeys the Wiedemann-Franz law for magnetic fields above the critical field at which the QCP is attained. This is also expected for magnetic fields below the critical field, where weak antiferromagnetic order and a Fermi-liquid phase form below 0.07 K (at zero field). At the critical field, however, the low-temperature electrical conductivity exceeds the thermal conductivity by about 10 per cent, suggestive of a non-Fermi-liquid ground state. This apparent violation of the Wiedemann-Franz law provides evidence for an unconventional type of QCP at which the fundamental concept of Landau quasiparticles no longer holds. These results imply that Landau quasiparticles break up, and that the origin of this disintegration is inelastic scattering associated with electronic quantum critical fluctuations--these insights could be relevant to understanding other deviations from Fermi-liquid behaviour frequently observed in various classes of correlated materials.

17.
Dalton Trans ; 41(4): 1278-83, 2012 Jan 28.
Article in English | MEDLINE | ID: mdl-22127478

ABSTRACT

The thermoelectric properties of a PtSb(2) single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified utilizing X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy. The correlation between Pt/Sb ratio and physical property parameters--Seebeck coefficient, mobility, resistivity and charge carrier concentration--was studied. Elemental analysis by Energy Dispersive X-Ray Spectroscopy, X-Ray Fluorescence and Inductively Coupled Plasma revealed Sb deficiency in the crystal, which explains the observed high charge carrier concentration and metallic properties. The transport properties were measured in the temperature range T = 20-300 K on a polycrystalline sample. Furthermore, ab initio theoretical calculations have been conducted to support the interpretation of the measurements.

18.
Dalton Trans ; 39(4): 1012-9, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20066185

ABSTRACT

FeSb(2) was recently identified as a narrow-gap semiconductor with indications of strong electron-electron correlations. In this manuscript, we report on systematic thermoelectric investigation of a number of FeSb(2) single crystals with varying carrier concentrations, together with two isoelectronically substituted FeSb(2-x)As(x) samples (x = 0.01 and 0.03) and two reference compounds FeAs(2) and RuSb(2). Typical behaviour associated with narrow bands and narrow gaps is only confirmed for the FeSb(2) and the FeSb(2-x)As(x) samples. The maximum absolute thermopower of FeSb(2) spans from 10 to 45 mV/K at around 10 K, greatly exceeding that of both FeAs(2) and RuSb(2). The relation between the carrier concentration and the maximum thermopower value is in approximate agreement with theoretical predictions of the electron-diffusion contribution which, however, requires an enhancement factor larger than 30. The isoelectronic substitution leads to a reduction of the thermal conductivity, but the charge-carrier mobility is also largely reduced due to doping-induced crystallographic defects or impurities. In combination with the high charge-carrier mobility and the enhanced thermoelectricity, FeSb(2) represents a promising candidate for thermoelectric cooling applications at cryogenic temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...