Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.677
Filter
1.
Sci Adv ; 10(23): eado4756, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838153

ABSTRACT

Topological systems hosting gapless boundary states have attracted huge attention as promising components for next-generation information processing, attributed to their capacity for dissipationless electronics. Nevertheless, recent theoretical and experimental inquiries have revealed the emergence of energy dissipation in precisely quantized electrical transport. Here, we present a criterion for the realization of truly no-dissipation design, characterized as Nin = Ntunl + Nbs, where Nin, Ntunl, and Nbs represent the number of modes participating in injecting, tunneling, and backscattering processes, respectively. The key lies in matching the number of injecting, tunneling, and backscattering modes, ensuring the equilibrium among all engaged modes inside the device. Among all the topological materials, we advocate for the indispensability of Chern insulators exhibiting higher Chern numbers to achieve functional devices and uphold the no-dissipation rule simultaneously. Furthermore, we design the topological current divider and collector, evading dissipation upon fulfilling the established criterion. Our work paves the path for developing the prospective topotronics.

2.
Reprod Toxicol ; 128: 108634, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851359

ABSTRACT

Vinorelbine is a commonly used drug to treat various malignancies, such as breast cancer, non-small cell lung cancer, and metastatic pleural mesothelioma. Its side effects include severe neutropenia, local phlebitis, gastrointestinal reactions, and neurotoxicity. In view of the scarcity of research on vinorelbine's reproductive toxicity, this study evaluated the impact of vinorelbine ditartrate, a commonly used form of vinorelbine, on oocyte maturation in vitro. Our investigation revealed that vinorelbine ditartrate had no effect on oocyte meiotic resumption. However, it did reduce the rate of first polar body extrusion, suggesting that it could significantly impede the meiotic maturation of oocytes. Vinorelbine ditartrate exposure was found to disturb the regular spindle assembly and chromosome alignment, leading to the continuous activation of the spindle assembly checkpoint (SAC) and a delayed activation of the anaphase-promoting complex/cyclosome (APC/C), ultimately causing aneuploidy in oocytes. Consequently, the administration of vinorelbine is likely to result in oocyte aneuploidy, which can be helpful in providing a drug reference and fertility guidance in a clinical context.

3.
Phys Rev Lett ; 132(21): 216001, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856265

ABSTRACT

We propose a universal spin superconducting diode effect (SDE) induced by spin-orbit coupling (SOC) in systems with spin-triplet correlations, where the critical spin supercurrents in opposite directions are unequal. By analysis from both the Ginzburg-Landau theory and energy band analysis, we show that the spin-↑↑ and spin-↓↓ Cooper pairs possess opposite phase gradients and opposite momenta from the SOC, which leads to the spin SDE. Two superconductors with SOC, a p-wave superconductor as a toy model and a practical superconducting nanowire, are numerically studied and they both exhibit spin SDE. In addition, our theory also provides a unified picture for both spin and charge SDEs.

4.
Heliyon ; 10(10): e30877, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774325

ABSTRACT

Disulfidptosis, an innovative type of controlled cellular death linked to metabolic dysfunction, has garnered attention. However, there is limited knowledge regarding the involvement of disulfidptosisrelated lnRNAs (DRlncRNAs) in laryngeal squamous cell carcinoma (LSCC). The objective of our team in this study seeks to establish a DRlncRNAs signature, investigate their prognostic value in LSCC, and explore their associations with immune cell subpopulations, biological signaling pathways, and exploring implications for drug sensitivity. We accessed LSCC patients' RNA-seq data and pertinent clinical data for subsequent further analysis from The Cancer Genome Atlas (TCGA) portal. A literature search was conducted focusing on disulfidptosis-related genes. Pearson correlation coefficients were calculated to identify DRlncRNAs. Differential expression analysis of lncRNAs was performed. Utilizing univariate Cox regression analysis, we identified disulfidptosis-associated prognostic lncRNAs. The LASSO-Cox regression analysis was employed to refine this set of lncRNAs and construct a disulfidptosis-related lncRNAs signature. Various statistical techniques were employed to appraise model predictive performance. Subsequently, risk groups were stratified based on the risk score derived from the DRlncRNAs signature. The superiority of the risk score in prognostication over traditional clinicopathological features in LSCC patients was demonstrated. Evident distinctions emerged between risk groups, particularly in immune cell subpopulations like activated mast cells, eosinophils, and activated NK cells. Finally, the low-risk group demonstrated reduced IC50 values for specific chemotherapeutics like cisplatin and gemcitabine. The in vitro experiments indicated differential behavior of our DRlncRNAs. The DRlncRNAs signature can serve as a robust biomarker with the ability to predict both prognosis and therapeutic responses among patients with LSCC.

5.
Front Bioeng Biotechnol ; 12: 1385264, 2024.
Article in English | MEDLINE | ID: mdl-38798954

ABSTRACT

Uphill walking is a common task encountered in daily life, with steeper inclines potentially imposing greater biomechanical and neuromuscular demands on the human body. The heel-to-toe drop (HTD) in footwear may influence the biomechanical and neuromuscular pattern of uphill walking; but the impact remains unclear. Adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body's response to different inclinations. We hypothesize that adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body's response to different inclinations. Nineteen healthy men walked on an adjustable slope walkway, with varied inclinations (6°, 12°, 20°) and HTD shoes (10mm, 25mm, 40 mm), while the marker positions, ground reaction forces and electromyography data were collected. Our study reveals that gait temporo-spatial parameters are predominantly affected by inclination over HTD. Inclination has a more pronounced effect on kinematic variables, while both inclination and HTD significantly modulate kinetic and muscle synergy parameters. This study demonstrates that an increase in the inclination leads to changes in biomechanical and neuromuscular responses during uphill walking and the adjustment of HTD can modulate these responses during uphill walking. However, the present study suggests that an increased HTD may lead to elevated loads on the knee joint and these adverse effects need more attention.

6.
New Phytol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785184

ABSTRACT

Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.

7.
Eur J Pharmacol ; 976: 176696, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38821160

ABSTRACT

Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.


Subject(s)
Acute Kidney Injury , Caffeic Acids , Lipopolysaccharides , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , Succinates , Animals , Sepsis/complications , Sepsis/drug therapy , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Male , Succinates/pharmacology , Succinates/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RAW 264.7 Cells , Oxidative Stress/drug effects , Inflammasomes/metabolism , Mice, Inbred C57BL , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Glycolysis/drug effects , Apoptosis/drug effects , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Macrophage Activation/drug effects
8.
Org Lett ; 26(19): 4152-4157, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38722029

ABSTRACT

An efficient approach was developed for the synthesis of the well-known BlueCage by pre-bridging two 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) panels with one linker followed by cage formation in a much improved yield and shortened reaction time. Such a stepwise methodology was further applied to synthesize three new pyridinium organic cages, C2, C3, and C4, where the low-symmetry cages C3 and C4 with angled panels demonstrated better recognition properties toward 1,1'-bi-2-naphthol (BINOL) than the high-symmetry analogue C2 featuring parallel platforms.

9.
Chem Sci ; 15(17): 6522-6529, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699280

ABSTRACT

Site selective functionalization of inert remote C(sp3)-H bonds to increase molecular complexity offers vital potential for chemical synthesis and new drug development, thus it has been attracting ongoing research interest. In particular, typical ß-C(sp3)-H arylation methods using chelation-assisted metal catalysis or metal-catalyzed oxidative/photochemical in situ generated allyl C(sp3)-H bond processes have been well developed. However, radical-mediated direct ß-C(sp3)-H arylation of carbonyls remains elusive. Herein, we describe an iodoarene-directed photoredox ß-C(sp3)-H arylation of 1-(o-iodoaryl)alkan-1-ones with cyanoarenes via halogen atom transfer (XAT) and hydrogen atom transfer (HAT). The method involves diethylaminoethyl radical-mediated generation of an aryl radical intermediate via XAT, then directed 1,5-HAT to form the remote alkyl radical intermediate and radical-radical coupling with cyanoarenes, and is applicable to a broad scope of unactivated remote C(sp3)-H bonds like ß-C(sp3)-H bonds of o-iodoaryl-substituted alkanones and α-C(sp3)-H bonds of o-iodoarylamides. Experimental findings are supported by computational studies (DFT calculations), revealing that this method operates via a radical-relay stepwise mechanism involving multiple SET, XAT, 1,5-HAT and radical-radical coupling processes.

10.
Microb Cell Fact ; 23(1): 129, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711040

ABSTRACT

BACKGROUND: Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS: We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS: We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Sesterterpenes , Sesterterpenes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
11.
Sci Rep ; 14(1): 10763, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730264

ABSTRACT

The association between cooking fuel and hearing loss still needs more research to clarify, and two longitudinal cohort studies were explored to find if solid fuel use for cooking affected hearing in Chinese adults. The data from Chinese Health and Retirement Longitudinal Survey (CHARLS) and Chinese Longitudinal Healthy Longevity Survey (CLHLS) were analyzed. Participants (older than 18) without hearing loss at baseline and follow-up visits were included, which were divided into clean fuel and solid fuel groups. Hearing loss rate was from follow-up visits (both in year 2011) until the recent one (year 2018 in CHARLS and 2019 in CLHLS). Cox regressions were applied to examine the associations with adjustment for potential confounders. Fixed-effect meta-analysis was used to pool the results. A total of 9049 participants (average age 8.34 ± 9.12 [mean ± SD] years; 4247 [46.93%] males) were included in CHARLS cohort study and 2265 participants (average age, 78.75 ± 9.23 [mean ± SD] years; 1148 [49.32%] males) in CLHLS cohort study. There were 1518 (16.78%) participants in CHARLS cohort and 451 (19.91%) participants in CLHLS cohort who developed hearing loss. The group of using solid fuel for cooking had a higher risk of hearing loss (CHARLS: HR, 1.16; 95% CI 1.03-1.30; CLHLS: HR, 1.43; 95% CI 1.11-1.84) compared with the one of using clean fuel. Pooled hazard ratio showed the incidence of hearing loss in the solid fuel users was 1.17 (1.03, 1.29) times higher than that of clean fuel users. Hearing loss was associated with solid fuel use and older people were at higher risk. It is advised to replace solid fuel by clean fuel that may promote health equity.


Subject(s)
Cooking , Hearing Loss , Humans , Male , Hearing Loss/epidemiology , Hearing Loss/etiology , Hearing Loss/chemically induced , Female , Aged , China/epidemiology , Middle Aged , Longitudinal Studies , Cohort Studies , Aged, 80 and over , Adult , Risk Factors
12.
J Genet Genomics ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38657948

ABSTRACT

Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.

13.
J Agric Food Chem ; 72(17): 9567-9580, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38627202

ABSTRACT

Monascus is a filamentous fungus that has been used in the food and pharmaceutical industries. When used as an auxiliary fermenting agent in the manufacturing of cheese, Monascus cheese is obtained. Citrinin (CIT) is a well-known hepatorenal toxin produced by Monascus that can harm the kidneys structurally and functionally and is frequently found in foods. However, CIT contamination in Monascus cheese is exacerbated by the metabolic ability of Monascus to product CIT, which is not lost during fermentation, and by the threat of contamination by Penicillium spp. that may be introduced during production and processing. Considering the safety of consumption and subsequent industrial development, the CIT contamination of Monascus cheese products needs to be addressed. This review aimed to examine its occurrence in Monascus cheese, risk implications, traditional control strategies, and new research advances in prevention and control to guide the application of biotechnology in the control of CIT contamination, providing more possibilities for the application of Monascus in the cheese industry.


Subject(s)
Cheese , Citrinin , Food Contamination , Monascus , Monascus/metabolism , Monascus/chemistry , Cheese/microbiology , Cheese/analysis , Citrinin/analysis , Food Contamination/analysis , Food Contamination/prevention & control , Humans , Fermentation
14.
Eur J Pharmacol ; 974: 176603, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38679121

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a group of respiratory diseases that are extremely complex and challenging to treat. Due to its high mortality rate and short survival, it's often referred to as a "tumor-like disease" that poses a serious threat to human health. OBJECTIVE: We aimed validate the potential of Deapioplatycodin D (DPD) to against PF and clarify the underlying mechanism of action of DPD for the treatment of PF based on bioinformatics and experimental verification. This finding provides a basis for the development of safe and effective therapeutic PF drugs based on DPD. METHODS: We used LPS-induced early PF rats as a PF model to test the overall efficacy of DPD in vivo. Then, A variety of bioinformatics methods, such as WGCNA, LASSO algorithm and immune cell infiltration (ICI), were applied to analyze the gene microarray related to PF obtained from Gene Expression Omnibus (GEO) to obtained key targets of PF. Finally, an in vitro PF model was constructed based on BEAS-2B cells while incorporating rat lung tissues to validate the regulatory effects of DPD on critical genes. RESULTS: DPD can effectively alleviate inflammatory and fibrotic markers in rat lungs. WGCNA analysis resulted in a total of six expression modules, with the brown module having the highest correlation with PF. Subsequently, seven genes were acquired by intersecting the genes in the brown module with DEGs. Five key genes were identified as potential biomarkers of PF by LASSO algorithm and validation dataset verification analysis. In the ICI analysis, infiltration of activated B cell, immature B cell and natural killer cells were found to be more crucial in PF. Ultimately, it was observed that DPD could modulate key genes to achieve anti-PF effects. CONCLUSION: In short, these comprehensive analysis methods were employed to identify critical biomarkers closely related to PF, which helps to elucidate the pathogenesis and potential immunotherapy targets of PF. It also provides essential support for the potential of DPD against PF.


Subject(s)
Computational Biology , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Rats , Humans , Male , Rats, Sprague-Dawley , Gene Regulatory Networks/drug effects , Cell Line , Lung/drug effects , Lung/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Gene Expression Profiling
15.
Curr Opin Biotechnol ; 87: 103113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564969

ABSTRACT

A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.


Subject(s)
Bacteria , Symbiosis , Synthetic Biology , Animals , Bacteria/genetics , Bacteria/metabolism , Synthetic Biology/methods
16.
Head Neck ; 46(7): E75-E79, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38622973

ABSTRACT

BACKGROUND: Trigeminal trophic syndrome (TTS) is a rare condition caused by damage to the trigeminal nervous system, resulting in sensory disturbances and ulcers on the face. Treating TTS is complex and often requires medical or surgical intervention like flap reconstruction. However, there is limited research on surgical treatments for TTS ulcers. METHODS: We report the case of a 19-year-old man with TTS. We employed an innovative surgical technique involving dual cross-face nerve grafts. In the initial procedure, corneal neuralization was accomplished using supraorbital and cross-face infraorbital nerve graft. The subsequent operation utilized auricular composite tissue flap transplantation repair and cross-face mental nerve graft. RESULTS: This procedure led to rapid and sustained healing, as well as aesthetic improvement. CONCLUSION: Cross-face nerve grafts is a promising tool in the treatment of refractory ulcers caused by diseases such as TTS.


Subject(s)
Trigeminal Nerve Diseases , Humans , Male , Young Adult , Trigeminal Nerve Diseases/surgery , Wound Healing/physiology , Surgical Flaps/transplantation , Skin Ulcer/surgery , Skin Ulcer/etiology , Plastic Surgery Procedures/methods , Trigeminal Nerve Injuries/surgery , Syndrome , Trigeminal Nerve/surgery
17.
Article in English | MEDLINE | ID: mdl-38572719

ABSTRACT

PURPOSE: This study was designed to conduct pooled comparisons of the relative clinical efficacy and safety of computed tomography (CT)-guided localization for pulmonary nodules (PNs) using either coil- or liquid material-based approaches. MATERIAL AND METHODS: Relevant articles published as of July 2023 were identified in the Web of Science, PubMed, and Wanfang databases, and pooled analyses of relevant endpoints were then conducted. RESULTS: Six articles that enrolled 287 patients (341 PNs) and 247 patients (301 PNs) that had respectively undergone CT-guided localization procedures using coil- and liquid material-based approaches prior to video-assisted thoracic surgery (VATS) were included in this meta-analysis. The liquid material group exhibited a significantly higher pooled successful localization rate as compared to the coil group (p = 0.01), together with significantly lower pooled total complication rates (p = 0.0008) and pneumothorax rates (p = 0.01). Both groups exhibited similar rates of pulmonary hemorrhage (p = 0.44) and successful wedge resection (p = 0.26). Liquid-based localization was also associated with significant reductions in pooled localization and VATS procedure durations (p = 0.004 and 0.007). CONCLUSIONS: These data are consistent with CT-guided localization procedures performed using liquid materials being safer and more efficacious than coil-based localization in patients with PNs prior to VATS resection.

18.
Plants (Basel) ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38592876

ABSTRACT

The classification system for the genus Aconitum is highly complex. It is also the subject of ongoing debate. Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. are perennial herbs of the genus Aconitum. Dried roots of these two plants are used in traditional Chinese medicine. In this study, morphological observations and ISSR molecular markers were employed to discriminate between A. flavum and A. pendulum, with the objective of gaining insights into the interspecies classification of Aconitum. The pubescence on the inflorescence of A. flavum was found to be appressed, while that on the inflorescence of A. pendulum was spread. UPGMA (unweighted pair-group method with arithmetic average) cluster analysis, PCoA (principal coordinates analysis), and Bayesian structural analysis divided the 199 individuals (99 individuals from DWM population and 100 individuals from QHL population) into two main branches, which is consistent with the observations of the morphology of pubescence on the inflorescence. These analyses indicated that A. flavum and A. pendulum are distinct species. No diagnostic bands were found between the two species. Two primer combinations (UBC808 and UBC853) were ultimately selected for species identification of A. flavum and A. pendulum. This study revealed high levels of genetic diversity in both A. flavum (He = 0.254, I = 0.395, PPB = 95.85%) and A. pendulum (He = 0.291, I = 0.445, PPB = 94.58%). We may say, therefore, that ISSR molecular markers are useful for distinguishing A. flavum and A. pendulum, and they are also suitable for revealing genetic diversity and population structure.

19.
Heliyon ; 10(7): e28957, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601682

ABSTRACT

Background: Cushing disease (CD) is a rare clinical neuroendocrine disease. CD is characterized by abnormal hypercortisolism induced by a pituitary adenoma with the secretion of adrenocorticotropic hormone. Individuals with CD usually exhibit atrophy of gray matter volume. However, little is known about the alterations in topographical organization of individuals with CD. This study aimed to investigate the structural covariance networks of individuals with CD based on the gray matter volume using graph theory analysis. Methods: High-resolution T1-weighted images of 61 individuals with CD and 53 healthy controls were obtained. Gray matter volume was estimated and the structural covariance network was analyzed using graph theory. Network properties such as hubs of all participants were calculated based on degree centrality. Results: No significant differences were observed between individuals with CD and healthy controls in terms of age, gender, and education level. The small-world features were conserved in individuals with CD but were higher than those in healthy controls. The individuals with CD showed higher global efficiency and modularity, suggesting higher integration and segregation as compared to healthy controls. The hub nodes of the individuals with CD were Short insular gyri (G_insular_short_L), Anterior part of the cingulate gyrus and sulcus (G_and_S_cingul-Ant_R), and Superior frontal gyrus (G_front_sup_R). Conclusions: Significant differences in the structural covariance network of patients with CD were found based on graph theory. These findings might help understanding the pathogenesis of individuals with CD and provide insight into the pathogenesis of this CD.

20.
Discov Oncol ; 15(1): 102, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573548

ABSTRACT

BACKGROUND: Abnormal expression of protein tyrosine kinase 6 (PTK6) has been proven to be involved in the development of gynecological tumors. However, its immune-related carcinogenic mechanism in other tumors remains unclear. OBJECTIVE: The aim of this study was to identify PTK6 as a novel prognostic biomarker in pan-cancer, especially in lung adenocarcinoma (LUAD), which is correlated with immune infiltration, and to clarify its clinicopathological and prognostic significance. METHODS: The prognostic value and immune relevance of PTK6 were investigated by using bio-informatics in this study. PTK6 expression was validated in vitro experiments (lung cancer cell lines PC9, NCI-H1975, and HCC827; human normal lung epithelial cells BEAS-2B). Western blot (WB) revealed the PTK6 protein expression in lung cancer cell lines. PTK6 expression was inhibited by Tilfrinib. Colony formation and the Cell Counting Kit-8 (CCK-8) assay were used to detect cell proliferation. The wound healing and trans-well were performed to analyze the cell migration capacity. Then flow cytometry was conducted to evaluate the cell apoptosis. Eventually, the relationship between PTK6 and immune checkpoints was examined. WB was used to estimate the PD-L1 expression at different Tilfrinib doses. RESULTS: PTK6 was an independent predictive factor for LUAD and was substantially expressed in LUAD. Pathological stage was significantly correlated with increased PTK6 expression. In accordance with survival analysis, poor survival rate in LUAD was associated with a high expression level of PTK6. Functional enrichment of the cell cycle and TGF-ß signaling pathway was demonstrated by KEGG and GSEA analysis. Moreover, PTK6 expression considerably associated with immune infiltration in LUAD, as determined by immune analysis. Thus, the result of vitro experiments indicated that cell proliferation and migration were inhibited by the elimination of PTK6. Additionally, PTK6 suppression induced cell apoptosis. Obviously, PD-L1 protein expression level up-regulated while PTK6 was suppressed. CONCLUSION: PTK6 has predictive value for LUAD prognosis, and could up regulated PD-L1.

SELECTION OF CITATIONS
SEARCH DETAIL
...