Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Article in English | MEDLINE | ID: mdl-38572719

ABSTRACT

PURPOSE: This study was designed to conduct pooled comparisons of the relative clinical efficacy and safety of computed tomography (CT)-guided localization for pulmonary nodules (PNs) using either coil- or liquid material-based approaches. MATERIAL AND METHODS: Relevant articles published as of July 2023 were identified in the Web of Science, PubMed, and Wanfang databases, and pooled analyses of relevant endpoints were then conducted. RESULTS: Six articles that enrolled 287 patients (341 PNs) and 247 patients (301 PNs) that had respectively undergone CT-guided localization procedures using coil- and liquid material-based approaches prior to video-assisted thoracic surgery (VATS) were included in this meta-analysis. The liquid material group exhibited a significantly higher pooled successful localization rate as compared to the coil group (p = 0.01), together with significantly lower pooled total complication rates (p = 0.0008) and pneumothorax rates (p = 0.01). Both groups exhibited similar rates of pulmonary hemorrhage (p = 0.44) and successful wedge resection (p = 0.26). Liquid-based localization was also associated with significant reductions in pooled localization and VATS procedure durations (p = 0.004 and 0.007). CONCLUSIONS: These data are consistent with CT-guided localization procedures performed using liquid materials being safer and more efficacious than coil-based localization in patients with PNs prior to VATS resection.

2.
Gene ; 916: 148426, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38575101

ABSTRACT

Since late 2019, COVID-19 has significantly impacted the world. Understanding the evolution of SARS-CoV-2 is crucial for protecting against future infectious pathogens. In this study, we conducted a comprehensive chronological analysis of SARS-CoV-2 evolution by examining mutation prevalence from the source countries of VOCs: United Kingdom, India, Brazil, South Africa, plus two countries: United States, Russia, utilizing genomic sequences from GISAID. Our methodological approach involved large-scale genomic sequence alignment using MAFFT, Python-based data processing on a high-performance computing platform, and advanced statistical methods the Maximal Information Coefficient (MIC), and also Long Short-Term Memory (LSTM) models for correlation analysis. Our findings elucidate the dynamics of SARS-CoV-2 evolution, highlighting the virus's changing behaviour over various pandemic stages. Key results include the discovery of three temporal mutation patterns-lineage distinct, long-span, and competitive mutations-with varying levels of impact on the virus. Notably, we observed a convergence of advantageous mutations in the spike protein, especially in the later stages of the pandemic, indicating a substantial evolutionary pressure on the virus. One of the most significant revelations is the predominant role of natural immunity over vaccination-induced immunity in driving these evolutionary changes. This emphasizes the critical need for regular vaccine updates to maintain efficacy against evolving strains. In conclusion, our study not only sheds light on the evolutionary trajectory of SARS-CoV-2 but also underscores the urgency for robust, continuous global data collection and sharing. It highlights the necessity for rapid adaptations in medical countermeasures, including vaccine development, to stay ahead of pathogen evolution. This research provides valuable insights for future pandemic preparedness and response strategies.


Subject(s)
COVID-19 , Evolution, Molecular , Mutation , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Humans , COVID-19/epidemiology , COVID-19/virology , South Africa/epidemiology , India/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Brazil/epidemiology , United Kingdom/epidemiology , Russia/epidemiology , Genome, Viral , Phylogeny , United States/epidemiology
3.
Nucleic Acids Res ; 52(D1): D798-D807, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889020

ABSTRACT

Influenza viruses undergo frequent genomic mutations, leading to potential cross-species transmission, phenotypic changes, and challenges in diagnostic reagents and vaccines. Accurately evaluating and predicting the risk of such variations remain significant challenges. To address this, we developed the VarEPS-Influ database, an influenza virus variations risk evaluation system (VarEPS-Influ). This database employs a 'multi-dimensional evaluation of mutations' strategy, utilizing various tools to assess the physical and chemical properties, primary, secondary, and tertiary structures, receptor affinity, antibody binding capacity, antigen epitopes, and other aspects of the variation's impact. Additionally, we consider space-time distribution, host species distribution, pedigree analysis, and frequency of mutations to provide a comprehensive risk evaluation of mutations and viruses. The VarEPS-Influ database evaluates both observed variations and virtual variations (variations that have not yet occurred), thereby addressing the time-lag issue in risk predictions. Our current one-stop evaluation system for influenza virus genomic variation integrates 1065290 sequences from 224 927 Influenza A, B and C isolates retrieved from public resources. Researchers can freely access the data at https://nmdc.cn/influvar/.


Subject(s)
Databases, Genetic , Influenza, Human , Orthomyxoviridae , Humans , Antibodies/genetics , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Mutation , Orthomyxoviridae/genetics , Genetic Variation , Genome, Viral , Risk Assessment
4.
Nucleic Acids Res ; 52(D1): D714-D723, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37850635

ABSTRACT

Here, we present the manually curated Global Catalogue of Pathogens (gcPathogen), an extensive genomic resource designed to facilitate rapid and accurate pathogen analysis, epidemiological exploration and monitoring of antibiotic resistance features and virulence factors. The catalogue seamlessly integrates and analyzes genomic data and associated metadata for human pathogens isolated from infected patients, animal hosts, food and the environment. The pathogen list is supported by evidence from medical or government pathogenic lists and publications. The current version of gcPathogen boasts an impressive collection of 1 164 974 assemblies comprising 986 044 strains from 497 bacterial taxa, 4794 assemblies encompassing 4319 strains from 265 fungal taxa, 89 965 assemblies featuring 13 687 strains from 222 viral taxa, and 646 assemblies including 387 strains from 159 parasitic taxa. Through this database, researchers gain access to a comprehensive 'one-stop shop' that facilitates global, long-term public health surveillance while enabling in-depth analysis of genomes, sequence types, antibiotic resistance genes, virulence factors and mobile genetic elements across different countries, diseases and hosts. To access and explore the data and statistics, an interactive web interface has been developed, which can be accessed at https://nmdc.cn/gcpathogen/. This user-friendly platform allows seamless querying and exploration of the extensive information housed within the gcPathogen database.


Subject(s)
Databases, Genetic , Infections , Public Health , Humans , Genome, Bacterial/genetics , Genomics , Virulence Factors/genetics , Infections/microbiology , Infections/parasitology , Infections/virology , Animals
5.
Nucleic Acids Res ; 51(D1): D708-D716, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36271801

ABSTRACT

Fungal taxonomy is a complex and rapidly changing subject, which makes proper naming of fungi challenging for taxonomists. A registration platform with a standardized and information-integrated database is a powerful tool for efficient research on fungal taxonomy. Fungal Names (FN, https://nmdc.cn/fungalnames/; launched in 2011) is one of the three official fungal nomenclatural repositories authorized by the International Nomenclature Committee for Fungi (NCF). Currently, FN includes >567 000 taxon names from >10 000 related journals and books published since 1596 and covers >147 000 collection records of type specimens/illustrations from >5000 preserving agencies. FN is also a knowledge base that integrates nomenclature information with specimens, culture collections and herbaria/fungaria, publications and taxonomists, and represents a summary of the history and recent advances in fungal taxonomy. Published fungal names are categorized based on well-accepted nomenclature rules and can be readily searched with different keywords and strategies. In combination with a standardized name checking tool and a sequence alignment-based identification package, FN makes the registration and typification of nomenclatural novelties of fungi convenient and accurate.


Subject(s)
Fungi , Knowledge Bases , Data Management , Databases, Factual , Sequence Alignment , Fungi/classification , Terminology as Topic
6.
Nucleic Acids Res ; 50(D1): D888-D897, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34634813

ABSTRACT

The genomic variations of SARS-CoV-2 continue to emerge and spread worldwide. Some mutant strains show increased transmissibility and virulence, which may cause reduced protection provided by vaccines. Thus, it is necessary to continuously monitor and analyze the genomic variations of SARS-COV-2 genomes. We established an evaluation and prewarning system, SARS-CoV-2 variations evaluation and prewarning system (VarEPS), including known and virtual mutations of SARS-CoV-2 genomes to achieve rapid evaluation of the risks posed by mutant strains. From the perspective of genomics and structural biology, the database comprehensively analyzes the effects of known variations and virtual variations on physicochemical properties, translation efficiency, secondary structure, and binding capacity of ACE2 and neutralizing antibodies. An AI-based algorithm was used to verify the effectiveness of these genomics and structural biology characteristic quantities for risk prediction. This classifier could be further used to group viral strains by their transmissibility and affinity to neutralizing antibodies. This unique resource makes it possible to quickly evaluate the variation risks of key sites, and guide the research and development of vaccines and drugs. The database is freely accessible at www.nmdc.cn/ncovn.


Subject(s)
COVID-19/virology , Databases, Factual , Mutation , SARS-CoV-2/genetics , Algorithms , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/metabolism , Artificial Intelligence , DNA Primers , Genome, Viral , Humans
7.
Brachytherapy ; 20(4): 883-891, 2021.
Article in English | MEDLINE | ID: mdl-33863672

ABSTRACT

PURPOSE: To demonstrate the advantage of radioactive stent (RS) for treating malignant airway stenosis (MAS) in reducing the stent restenosis rate and increasing overall survival (OS). MATERIALS AND METHODS: Relevant studies in Pubmed, Embase, and Cochrane Library databases were identified. The rate of stent restenosis was the primary endpoint, whereas secondary endpoints were rates of stent-related complications, OS, and complete relief of dyspnea. This meta-analysis was conducted using RevMan v5.3. RESULTS: Five total studies including 131 and 119 patients that underwent RS and normal stent (NS) insertion, respectively, were identified and included in this meta-analysis. Four studies were randomized controlled trials and one study was retrospective study. Pooled rates of complete relief of dyspnea, chest pain, hemoptysis, and fistula formation were similar between these two groups (p = 0.72, 0.77, 0.92, and 0.62, respectively). Pooled Δstenosis grade was comparable between these two groups (p = 0.72). RS insertion was linked to a significant lower pooled stent restenosis rate, increased OS, and higher 3-month survival rate relative to NS insertion (p< 0.00001, 0.0001, and 0.03, respectively). Pooled 6-months survival rates was higher in RS group without significant difference (p = 0.06). Pooled stent restenosis rate was significant higher in RS group based on each subgroup analysis. No evidence of publication bias for these endpoints was detected via funnel plot. CONCLUSIONS: This meta-analysis revealed that RS insertion was sufficient to reduce rates of stent restenosis and to prolong patient OS relative to NS insertion when used to treat MAS.


Subject(s)
Brachytherapy , Brachytherapy/methods , Constriction, Pathologic , Humans , Retrospective Studies , Stents , Treatment Outcome
8.
Nucleic Acids Res ; 49(D1): D694-D705, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33119759

ABSTRACT

Taxonomic and functional research of microorganisms has increasingly relied upon genome-based data and methods. As the depository of the Global Catalogue of Microorganisms (GCM) 10K prokaryotic type strain sequencing project, Global Catalogue of Type Strain (gcType) has published 1049 type strain genomes sequenced by the GCM 10K project which are preserved in global culture collections with a valid published status. Additionally, the information provided through gcType includes >12 000 publicly available type strain genome sequences from GenBank incorporated using quality control criteria and standard data annotation pipelines to form a high-quality reference database. This database integrates type strain sequences with their phenotypic information to facilitate phenotypic and genotypic analyses. Multiple formats of cross-genome searches and interactive interfaces have allowed extensive exploration of the database's resources. In this study, we describe web-based data analysis pipelines for genomic analyses and genome-based taxonomy, which could serve as a one-stop platform for the identification of prokaryotic species. The number of type strain genomes that are published will continue to increase as the GCM 10K project increases its collaboration with culture collections worldwide. Data of this project is shared with the International Nucleotide Sequence Database Collaboration. Access to gcType is free at http://gctype.wdcm.org/.


Subject(s)
Databases, Genetic , Genome , Phylogeny , Prokaryotic Cells/metabolism , Research , Base Sequence , Data Analysis , RNA, Ribosomal, 16S/genetics
9.
Nucleic Acids Res ; 47(D1): D637-D648, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30365027

ABSTRACT

Meta-omics approaches have been increasingly used to study the structure and function of the microbial communities. A variety of large-scale collaborative projects are being conducted to encompass samples from diverse environments and habitats. This change has resulted in enormous demands for long-term data maintenance and capacity for data analysis. The Global Catalogue of Metagenomics (gcMeta) is a part of the 'Chinese Academy of Sciences Initiative of Microbiome (CAS-CMI)', which focuses on studying the human and environmental microbiome, establishing depositories of samples, strains and data, as well as promoting international collaboration. To accommodate and rationally organize massive datasets derived from several thousands of human and environmental microbiome samples, gcMeta features a database management system for archiving and publishing data in a standardized way. Another main feature is the integration of more than ninety web-based data analysis tools and workflows through a Docker platform which enables data analysis by using various operating systems. This platform has been rapidly expanding, and now hosts data from the CAS-CMI and a number of other ongoing research projects. In conclusion, this platform presents a powerful and user-friendly service to support worldwide collaborative efforts in the field of meta-omics research. This platform is freely accessible at https://gcmeta.wdcm.org/.


Subject(s)
Databases, Genetic , Metagenome , Metagenomics/methods , Microbiota , Software , Metagenomics/standards , Reference Standards
10.
Gigascience ; 7(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29718202

ABSTRACT

Genomic information is essential for taxonomic, phylogenetic, and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microorganisms. Hence, the GCM aims to promote research by deep-mining genomic data.


Subject(s)
Bacteria/genetics , Fungi/genetics , Genomics/methods , Prokaryotic Cells/metabolism , Sequence Analysis, DNA/methods , Reproducibility of Results
11.
Nucleic Acids Res ; 45(D1): D611-D618, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28053166

ABSTRACT

The World Data Centre for Microorganisms (WDCM) was established 50 years ago as the data center of the World Federation for Culture Collections (WFCC)-Microbial Resource Center (MIRCEN). WDCM aims to provide integrated information services using big data technology for microbial resource centers and microbiologists all over the world. Here, we provide an overview of WDCM including all of its integrated services. Culture Collections Information Worldwide (CCINFO) provides metadata information on 708 culture collections from 72 countries and regions. Global Catalogue of Microorganism (GCM) gathers strain catalogue information and provides a data retrieval, analysis, and visualization system of microbial resources. Currently, GCM includes >368 000 strains from 103 culture collections in 43 countries and regions. Analyzer of Bioresource Citation (ABC) is a data mining tool extracting strain related publications, patents, nucleotide sequences and genome information from public data sources to form a knowledge base. Reference Strain Catalogue (RSC) maintains a database of strains listed in International Standards Organization (ISO) and other international or regional standards. RSC allocates a unique identifier to strains recommended for use in diagnosis and quality control, and hence serves as a valuable cross-platform reference. WDCM provides free access to all these services at www.wdcm.org.


Subject(s)
Computational Biology/methods , Databases, Factual , Microbiology , Microbiota , Software , Biodiversity , Data Mining , Metagenomics/methods , Phylogeny , Web Browser , Workflow
12.
Sheng Wu Gong Cheng Xue Bao ; 32(4): 447-456, 2016 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-28853266

ABSTRACT

Surface enhanced Raman spectroscopy technology (SERS), using gold nanoparticles as a base, was developed for rapid and sensitive detection of virus strains. SERS can be used as a rapid and reliable method to distinguish the titers of viral replication. In the present study, we characterized H1N1 subtypes of influenza A virus strains in different conditions of pH or temperatures, while we analyzed data from SERS technology using gold nanoparticles as a base and cell cultures were employed to further confirm the data from virus strains. Origin8.0 was used to collect Raman spectra, smooth and homogenize data, and to contrast spectra. Our results indicated that the peaks of different virus strains in optimal environmental conditions (T=37 ℃/pH=7.2) reached ≥3 000. This criterion was verified by subsequent virological method. The present data indicate that the established SERS protocol can be used as a rapid and reliable method to distinguish the replication rate of virus, which can be further used in clinical samples.


Subject(s)
Influenza A Virus, H1N1 Subtype/growth & development , Virus Cultivation/methods , Gold , Hydrogen-Ion Concentration , Nanoparticles , Spectrum Analysis, Raman , Temperature
13.
Sci Rep ; 5: 18094, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26656876

ABSTRACT

Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14 °C and RHU 65-95%) for H7N9 infection and (TEM 2-22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks.


Subject(s)
Climate , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/virology , Algorithms , Atmospheric Pressure , China/epidemiology , Disease Outbreaks/prevention & control , Geography , Host-Pathogen Interactions , Humans , Humidity , Influenza, Human/epidemiology , Models, Theoretical , Risk Assessment , Risk Factors , Species Specificity , Temperature
14.
AMB Express ; 5: 7, 2015.
Article in English | MEDLINE | ID: mdl-25852984

ABSTRACT

3-Dehydroquinate dehydratase (DHQase) catalyzes the conversion of 3-dehydroquinic acid to 3-dehydroshikimic acid of the shikimate pathway. In this study, 3180 prokaryotic genomes were examined and 459 DHQase sequences were retrieved. Based on sequence analysis and their original hosts, 38 DHQase genes were selected for chemical synthesis. The selected DHQases were translated into new DNA sequences according to the genetic codon usage bias by both Escherichia coli and Corynebacterium glutamicum. The new DNA sequences were customized for synthetic biological applications by adding Biobrick adapters at both ends and by removal of any related restriction endonuclease sites. The customized DHQase genes were successfully expressed in E. coli, and functional DHQases were obtained. Kinetic parameters of Km, kcat, and Vmax of DHQases were determined with a newly established high-throughput method for DHQase activity assay. Results showed that DHQases possessed broad strength of substrate affinities and catalytic capacities. In addition to the DHQase kinetic diversities, this study generated a DHQase library with known catalytic constants that could be applied to design artificial modules of shikimate pathway for metabolic engineering and synthetic biology.

15.
Genomics Proteomics Bioinformatics ; 13(1): 69-72, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25721609

ABSTRACT

There are multitudes of web resources that are quite useful for the microbial scientific research community. Here, we provide a brief introduction on some of the most notable microbial web resources and an evaluation of them based upon our own user experience.


Subject(s)
Computational Biology , Databases, Factual , Internet , Microbiota/genetics , Humans
16.
Mol Neurobiol ; 50(2): 473-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24902808

ABSTRACT

Neurodegenerative disease is a general designation for the disorders that are progressive loss of structure or function and final death of neurons, including Alzheimer's, Parkinson's, Huntington's, prion diseases, etc. In this study, we comparatively analyzed 21 individual microarray data sets of the cortex tissues from 11 sporadic Creutzfeldt-Jakob disease (sCJD), 3 fatal familial insomnia (FFI), 3 Alzheimer's disease (AD), and 4 normal controls. After normalization, a collection of 730 differently expressed sets (DESets) were obtained by comparison of the data of three diseases with their original controls. Principal component analysis (PCA) showed a background-related distribution within the groups of FFI, AD, and normal control, but two apparently different subgroups within the group of sCJD were observed. Review of the clinical materials of 11 sCJD patients identified the difference in brain PrP(Sc) deposits between two subgroups. Hierarchical cluster analysis illustrated the relatively independent clusters of normal controls, FFIs, six sCJD cases (subgroup 1) with more PrP(Sc) deposits, respectively, while an overlapped cluster of five cases of sCJD2 (subgroup 2) with less PrP(Sc) deposits and AD patients. Despite of the presence of special gene expressions, many common features were found among those neurodegenerative diseases. The most commonly changed biological processes (BPs) were signal transduction, synaptic transmission, and neuropeptide signaling pathway. The most commonly changed pathways were MAPK signaling pathway, Parkinson's disease, and oxidative phosphorylation. Our data here provide the similarity and difference in global gene expressions among the patients with sCJD, FFI, and AD, which may help to understand the common mechanism of neurodegenerative diseases.


Subject(s)
Alzheimer Disease/genetics , Creutzfeldt-Jakob Syndrome/genetics , Genetic Predisposition to Disease , Insomnia, Fatal Familial/genetics , Transcriptome/genetics , Brain/pathology , Genotype , Humans , Neurons/metabolism , Neurons/pathology
17.
Nat Commun ; 5: 3142, 2014.
Article in English | MEDLINE | ID: mdl-24457975

ABSTRACT

Influenza A (H7N9) virus has been causing human infections in China since February 2013, raising serious concerns of potential pandemics. Previous studies demonstrate that human infection is directly linked to live animal markets, and that the internal genes of the virus are derived from H9N2 viruses circulating in the Yangtze River Delta area in Eastern China. Here following analysis of 109 viruses, we show a much higher genetic heterogeneity of the H7N9 viruses than previously reported, with a total of 27 newly designated genotypes. Phylogenetic and genealogical inferences reveal that genotypes G0 and G2.6 dominantly co-circulate within poultry, with most human isolates belonging to the genotype G0. G0 viruses are also responsible for the inter- and intra-province transmissions, leading to the genesis of novel genotypes. These observations suggest the province-specific H9N2 virus gene pools increase the genetic diversity of H7N9 via dynamic reassortments and also imply that G0 has not gained overwhelming fitness and the virus continues to undergo reassortment.


Subject(s)
Genetic Heterogeneity , Influenza A Virus, H7N9 Subtype/genetics , Reassortant Viruses/genetics , Animals , Disease Outbreaks , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza, Human/epidemiology , Influenza, Human/transmission , Influenza, Human/virology , Molecular Sequence Data , Phylogeny
18.
Mol Neurobiol ; 48(1): 36-48, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23430483

ABSTRACT

Fatal familial insomnia (FFI) is a special subtype of genetic human prion diseases that is caused by the D178N mutation of the prion protein gene (PRNP). According to the surveillance data from 2006, FFI accounts for about half of all genetic prion disease cases in China. In this study, global expression patterns of the thalamus and parietal cortex from three patients with FFI were analyzed by Affymetrix Human Genome U133+ 2.0 chip. A total of 1,314 genes in the thalamus and 332 ones in the parietal lobe were determined to be differentially expressed genes (DEGs). The percentage of upregulated DEGs is much less in the thalamus (19.3 %) than that in the parietal lobe (42.8 %). Moreover, 255 of those DEGs showed the same altering tendencies in both tested regions, including 99 upregulated and 156 downregulated ones. The reliability of the results was confirmed by the real-time RT-PCR assays. There were 1,152 and 531 biological processes affected in the thalamus and the parietal lobe, respectively, as well as 391 overlapping ones in both regions. The most significantly changed molecular functions included transcription and DNA-dependent regulation of transcription, RNA splicing, mitochondrial electron transport, etc. The changed functions in the thalamus contained more numbers of DEGs than parietal lobe. According to KEGG classification, there were 167 and 115 different pathways changed in the thalamus and the parietal lobe, respectively, while 102 were changed in both. Interestingly, the top three changed pathways in the three groups mentioned above were Parkinson's disease, Alzheimer's disease, and oxidative phosphorylation. These results demonstrate the greater damage in the thalamus than in the parietal lobe during FFI pathogenesis, which is consistent with previous pathological observations. This study aims to describe the global expression profiles in various brain regions of FFI while proposing useful clues for understanding the pathogenesis of FFI and selecting potential biomarkers for diagnostic and therapeutic tools.


Subject(s)
Asian People/genetics , Cerebral Cortex/metabolism , Gene Expression Profiling , Insomnia, Fatal Familial/genetics , Thalamus/metabolism , Adult , Cerebral Cortex/pathology , China , Cluster Analysis , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prions/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Thalamus/pathology , Transcription, Genetic
19.
BMC Genomics ; 14: 933, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24377417

ABSTRACT

BACKGROUND: Throughout the long history of industrial and academic research, many microbes have been isolated, characterized and preserved (whenever possible) in culture collections. With the steady accumulation in observational data of biodiversity as well as microbial sequencing data, bio-resource centers have to function as data and information repositories to serve academia, industry, and regulators on behalf of and for the general public. Hence, the World Data Centre for Microorganisms (WDCM) started to take its responsibility for constructing an effective information environment that would promote and sustain microbial research data activities, and bridge the gaps currently present within and outside the microbiology communities. DESCRIPTION: Strain catalogue information was collected from collections by online submission. We developed tools for automatic extraction of strain numbers and species names from various sources, including Genbank, Pubmed, and SwissProt. These new tools connect strain catalogue information with the corresponding nucleotide and protein sequences, as well as to genome sequence and references citing a particular strain. All information has been processed and compiled in order to create a comprehensive database of microbial resources, and was named Global Catalogue of Microorganisms (GCM). The current version of GCM contains information of over 273,933 strains, which includes 43,436 bacterial, fungal and archaea species from 52 collections in 25 countries and regions.A number of online analysis and statistical tools have been integrated, together with advanced search functions, which should greatly facilitate the exploration of the content of GCM. CONCLUSION: A comprehensive dynamic database of microbial resources has been created, which unveils the resources preserved in culture collections especially for those whose informatics infrastructures are still under development, which should foster cumulative research, facilitating the activities of microbiologists world-wide, who work in both public and industrial research centres. This database is available from http://gcm.wfcc.info.


Subject(s)
Archaea/classification , Bacteria/classification , Databases, Factual , Fungi/classification , Information Storage and Retrieval , Computational Biology , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...