Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824130

ABSTRACT

Interleukin-6 (IL-6) has been long considered a key player in cancer cachexia. It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia. However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, is a critical mediator of IL-6 function in cancer cachexia in male mice. We find that circulating IL-6 can rapidly enter the AP and activate neurons in the AP and its associated network. Peripheral tumor, known to increase circulating IL-6, leads to elevated IL-6 in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons and AP network hyperactivity. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an anti-IL-6 antibody attenuates cachexia and the hyperactivity in the AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra, the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing Gfral-expressing AP neurons also attenuates cancer cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer cachexia.


Subject(s)
Cachexia , Interleukin-6 , Neurons , Receptors, Interleukin-6 , Animals , Cachexia/metabolism , Cachexia/etiology , Interleukin-6/metabolism , Male , Neurons/metabolism , Mice , Receptors, Interleukin-6/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/complications , Cell Line, Tumor , Humans
2.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893554

ABSTRACT

CDK6 plays a key role in the regulation of the cell cycle and is considered a crucial target for cancer therapy. In this work, conformational transitions of CDK6 were identified by using Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy landscapes (FELs). DL finds that the binding pocket as well as the T-loop binding to the Vcyclin protein are involved in obvious differences of conformation contacts. This result suggests that the binding pocket of inhibitors (LQQ and AP9) and the binding interface of CDK6 to the Vcyclin protein play a key role in the function of CDK6. The analyses of FELs reveal that the binding pocket and the T-loop of CDK6 have disordered states. The results from principal component analysis (PCA) indicate that the binding of the Vcyclin protein affects the fluctuation behavior of the T-loop in CDK6. Our QM/MM-GBSA calculations suggest that the binding ability of LQQ to CDK6 is stronger than AP9 with or without the binding of the Vcyclin protein. Interaction networks of inhibitors with CDK6 were analyzed and the results reveal that LQQ contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. In addition, the binding pocket endures flexibility changes from opening to closing states and the Vcyclin protein plays an important role in the stabilizing conformation of the T-loop. We anticipate that this work could provide useful information for further understanding the function of CDK6 and developing new promising inhibitors targeting CDK6.


Subject(s)
Cyclin-Dependent Kinase 6 , Deep Learning , Molecular Dynamics Simulation , Protein Binding , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/chemistry , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Humans , Protein Conformation , Binding Sites , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Principal Component Analysis , Thermodynamics , Normal Distribution
3.
iScience ; 26(4): 106316, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36968064

ABSTRACT

The neocortex mediates information processing through highly organized circuitry that contains various neuron types. Distinct populations of projection neurons in different cortical regions and layers make specific connections and participate in distinct physiological functions. Herein, with the fluorescence micro-optical sectioning tomography (fMOST) and transgenetic mice that targeted intratelencephalic (IT) and pyramidal tract (PT) neurons at specific layers, we dissected the long-range connectome of pyramidal neurons in six subregions of the sensorimtor cortex. The distribution of the input neurons indicated that IT and PT neurons in the same region received information from similar regions, while the neurons in different subregions received from the preferred neuron populations. Both the input and projection areas of these six subregions showed the transverse and longitudinal correspondence in the cortico-cortical, cortico-thalamic, and cortico-striatal circuits, which indicated that the connections were topologically organized. This study provides a comprehensive resource on the anatomical connections of cortical circuits.

4.
bioRxiv ; 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36711916

ABSTRACT

Interleukin-6 (IL-6) has been long considered a key player in cancer-associated cachexia 1-15 . It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia 16-20 . However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, mediate the function of IL-6 in cancer-associated cachexia in mice. We found that circulating IL-6 can rapidly enter the AP and activate AP neurons. Peripheral tumor, known to increase circulating IL-6 1-5,15,18,21-23 , leads to elevated IL-6 and neuronal hyperactivity in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an IL-6 antibody prevents cachexia, reduces the hyperactivity in an AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra , the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing of Gfral-expressing AP neurons also ameliorates the cancer-associated cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer-associated cachexia.

5.
Sci Bull (Beijing) ; 67(1): 85-96, 2022 01.
Article in English | MEDLINE | ID: mdl-36545964

ABSTRACT

To decipher the organizational logic of complex brain circuits, it is important to chart long-distance pathways while preserving micron-level accuracy of local network. However, mapping the neuronal projections with individual-axon resolution in the large and complex primate brain is still challenging. Herein, we describe a highly efficient pipeline for three-dimensional mapping of the entire macaque brain with subcellular resolution. The pipeline includes a novel poly-N-acryloyl glycinamide (PNAGA)-based embedding method for long-term structure and fluorescence preservation, high-resolution and rapid whole-brain optical imaging, and image post-processing. The cytoarchitectonic information of the entire macaque brain was acquired with a voxel size of 0.32 µm × 0.32 µm × 10 µm, showing its anatomical structure with cell distribution, density, and shape. Furthermore, thanks to viral labeling, individual long-distance projection axons from the frontal cortex were for the first time reconstructed across the entire brain hemisphere with a voxel size of 0.65 µm × 0.65 µm × 3 µm. Our results show that individual cortical axons originating from the prefrontal cortex simultaneously target multiple brain regions, including the visual cortex, striatum, thalamus, and midbrain. This pipeline provides an efficient method for cellular and circuitry investigation of the whole macaque brain with individual-axon resolution, and can shed light on brain function and disorders.


Subject(s)
Imaging, Three-Dimensional , Macaca , Animals , Imaging, Three-Dimensional/methods , Brain Mapping/methods , Axons/physiology , Brain/diagnostic imaging
6.
Front Neurosci ; 16: 1033880, 2022.
Article in English | MEDLINE | ID: mdl-36278018

ABSTRACT

Visualizing the relationships and interactions among different biological components in the whole brain is crucial to our understanding of brain structures and functions. However, an automatic multicolor whole-brain imaging technique is still lacking. Here, we developed a multicolor wide-field large-volume tomography (multicolor WVT) to simultaneously acquire fluorescent signals in blue, green, and red channels in the whole brain. To facilitate the segmentation of brain regions and anatomical annotation, we used 4', 6-diamidino-2-phenylindole (DAPI) to provide cytoarchitecture through real-time counterstaining. We optimized the imaging planes and modes of three channels to overcome the axial chromatic aberration of the illumination path and avoid the crosstalk from DAPI to the green channel without the modification of system configuration. We also developed an automatic contour recognition algorithm based on DAPI-staining cytoarchitecture to shorten data acquisition time and reduce data redundancy. To demonstrate the potential of our system in deciphering the relationship of the multiple components of neural circuits, we acquired and quantified the brain-wide distributions of cholinergic neurons and input of ventral Caudoputamen (CP) with the anatomical annotation in the same brain. We further identified the cholinergic type of upstream neurons projecting to CP through the triple-color collocated analysis and quantified its proportions in the two brain-wide distributions. Both accounted for 0.22%, implying CP might be modulated by non-cholinergic neurons. Our method provides a new research tool for studying the different biological components in the same organ and potentially facilitates the understanding of the processing mechanism of neural circuits and other biological activities.

7.
Proc Natl Acad Sci U S A ; 119(40): e2202536119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161898

ABSTRACT

Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-ß plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.


Subject(s)
Alzheimer Disease , Basal Forebrain , Neurons , Synapses , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Basal Forebrain/ultrastructure , Disease Models, Animal , Mice , Mutation , Neuroimaging , Neurons/ultrastructure , Parvalbumins/analysis , Synapses/ultrastructure
8.
Front Neuroanat ; 16: 843303, 2022.
Article in English | MEDLINE | ID: mdl-35655583

ABSTRACT

The pontomesencephalic tegmentum, comprising the pedunculopontine nucleus and laterodorsal tegmental nucleus, is involved in various functions via complex connections; however, the organizational structure of these circuits in the whole brain is not entirely clear. Here, combining viral tracing with fluorescent micro-optical sectional tomography, we comprehensively investigated the input and output circuits of two cholinergic subregions in a continuous whole-brain dataset. We found that these nuclei receive abundant input with similar spatial distributions but with different quantitative measures and acquire similar neuromodulatory afferents from the ascending reticular activation system. Meanwhile, these cholinergic nuclei project to similar targeting areas throughout multiple brain regions and have different spatial preferences in 3D. Moreover, some cholinergic connections are unidirectional, including projections from the pedunculopontine nucleus and laterodorsal tegmental nucleus to the ventral posterior complex of the thalamus, and have different impacts on locomotion and anxiety. These results reveal the integrated cholinergic connectome of the midbrain, thus improving the present understanding of the organizational structure of the pontine-tegmental cholinergic system from its anatomical structure to its functional modulation.

9.
Nat Commun ; 13(1): 998, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194025

ABSTRACT

Short-term memory deficits have been associated with prefrontal cortex (PFC) dysfunction in Alzheimer's disease (AD) and AD mouse models. Extratelencephalic projection (ET) neurons in the PFC play a key role in short-term working memory, but the mechanism between ET neuronal dysfunction in the PFC and short-term memory impairment in AD is not well understood. Here, using fiber photometry and optogenetics, we found reduced neural activity in the ET neurons in the medial prefrontal cortex (mPFC) of the 5×FAD mouse model led to object recognition memory (ORM) deficits. Activation of ET neurons in the mPFC of 5×FAD mice rescued ORM impairment, and inhibition of ET neurons in the mPFC of wild type mice impaired ORM expression. ET neurons in the mPFC that project to supramammillary nucleus were necessary for ORM expression. Viral tracing and in vivo recording revealed that mPFC ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice. Furthermore, activation of cholinergic fibers in the mPFC rescued ORM deficits in 5×FAD mice, while acetylcholine deficiency reduced the response of ET neurons in the mPFC to familiar objects. Taken together, our results revealed a neural mechanism behind ORM impairment in 5×FAD mice.


Subject(s)
Alzheimer Disease , Acetylcholine/metabolism , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Flavin-Adenine Dinucleotide/metabolism , Mice , Neurons/metabolism , Prefrontal Cortex/metabolism
10.
Biomed Opt Express ; 12(11): 6730-6745, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34858677

ABSTRACT

Resin embedding of multi-color labeled whole organs is the primary step to preserve structural information for visualization of fine structures in three dimensions. It is essential to study the morphological characteristics, spatial and positional relationships of the millions of neurons, and the intricate network of blood vessels with fluorescent labels in the brain. However, the current resin embedding method is inadequate because of incompatibilities with fluorescent dyes, making it difficult to reconstruct a variety of structures for the interpretation of their complex spatial relationships. We modified the resin embedding method for large biological tissues labeled with multiple fluorescent dyes and proteins through different labeling strategies. With TrueBlack as the background fluorescence inhibitor in the glycol methacrylate (GMA) embedding, we referred to the method as GMA-T (Glycol methacrylate with TB). In the GMA-T embedded mouse brains, structures labeled with fluorescent proteins and dyes were visualized in millimeter-scale networks with sub-cellular resolution, allowing quantitative analysis of different anatomical structures in the same brain, including neurons and blood vessels. In combination with high-resolution whole-brain imaging, it is possible to obtain a variety of fluorescence labeled structures in just a few days. We quantified the distribution and morphology of the tdTomato-labeled vasoactive intestinal polypeptide (VIP) neurons and the BSA-FITC labeled blood vessels in the same brain. These results demonstrated that VIP neurons and blood vessels have their own unique distribution patterns and morphological characteristics among cortical regions and different layers in cerebral cortex, and there was no significant correlation between VIP neurons and vessels. This approach provides a novel approach to study the interaction among different anatomical structures within large-volume biological samples labeled with multiple fluorescent dyes and proteins, which helps elucidating the complex anatomical characteristics of biological organs.

11.
Elife ; 102021 11 18.
Article in English | MEDLINE | ID: mdl-34792021

ABSTRACT

The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.


Subject(s)
Connectome , Dorsal Raphe Nucleus/physiology , Midbrain Raphe Nuclei/physiology , Neurons/physiology , Animals , GABAergic Neurons/physiology , Mice
12.
Front Neuroanat ; 14: 608177, 2020.
Article in English | MEDLINE | ID: mdl-33324177

ABSTRACT

Axonopathy is a pathological feature observed in both Alzheimer's disease (AD) patients and animal models. However, identifying the temporal and regional progression of axonopathy during AD development remains elusive. Using the fluorescence micro-optical sectioning tomography system, we acquired whole-brain datasets in the early stage of 5xFAD/Thy1-GFP-M mice. We reported that among GFP labeled axons, GFP-positive axonopathy first formed in the lateral septal nucleus, subiculum, and medial mammillary nucleus. The axonopathy further increased in most brain regions during aging. However, most of the axonopathic varicosities disappeared significantly in the medial mammillary nucleus after 8 weeks old. Continuous three-dimensional datasets showed that axonopathy in the medial mammillary nucleus was mainly located on axons from hippocampal GFP-positive neurons. Using the rabies viral tracer in combination with immunohistochemistry, we found that axons in the medial mammillary nucleus from the subiculum were susceptible to lesions that prior to the occurrence of behavioral disorders. In conclusion, we created an early-stage spatiotemporal map of axonopathy in 5xFAD/Thy1-GFP-M mice and identified specific neural circuits which are vulnerable to axon lesions in an AD mouse model. These findings underline the importance of early interventions for AD, and may contribute to the understanding of its progression and its early symptom treatment.

13.
iScience ; 23(11): 101717, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33196032

ABSTRACT

Resin embedding is widely used to dissect the fine structure of bio-tissue with electron and optical microscopy. However, it is difficult to embed large-volume tissues with resin. Here, we modified the formula of LR-White resin to prevent the sample cracking during polymerization process and applied this method to the intact brains of mouse, ferret, and macaque. Meanwhile, we increased the fluorescence preservation rate for green fluorescent protein (GFP) from 73 ± 4.0% to 126 ± 3.0% and tdTomato from 60 ± 3.3% to 117 ± 2.8%. Combined with the whole-brain imaging system, we acquired the cytoarchitectonic information and the circuit information such as individual axon and boutons which were labeled with multiple fluorescent proteins. This method shows great potential in the study of continuous fine microstructure information in large-volume tissues from different species, which can facilitate the neuroscience research and help the understanding of the structure-function relationship in complex bio-tissues.

14.
iScience ; 23(3): 100894, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32092698

ABSTRACT

Ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) are both critical regions for social behaviors. However, how their interactions affect social behavior is not well understood. By viral tracing, optogenetics, chemogenetics, and fiber photometry, we demonstrated that inhibition of vHIP or direct projections from vHIP to mPFC impaired social memory expression. Via rabies retrograde tracing, we found that all three major GABAergic neurons in mPFC received direct inputs from vHIP. Activation of parvalbumin positive (PV+) neurons in mPFC but not somatostatin positive (SST+) neurons can rescue the social memory impairment caused by vHIP inhibition. Furthermore, fiber photometry results demonstrated that social behaviors preferentially recruited PV+ neurons and inhibition of hippocampal neurons disrupted the activity of PV+ neurons during social interactions. These results revealed a new mechanism of how vHIP and mPFC regulate social behavior in complementarity with the existing neural circuitry mechanism.

15.
IEEE Trans Biomed Eng ; 67(10): 2765-2772, 2020 10.
Article in English | MEDLINE | ID: mdl-32011997

ABSTRACT

Bioelectromagnetism focuses on the study of electromagnetic fields in biological tissues from direct current (DC) to optical frequencies. It is challenging to develop an electromagnetics (EM) simulation method to cover this entire frequency band due to the electrically small/large scattering problem at extremely low/high frequencies. This paper focuses on the band from DC to microwave frequencies in bioelectromagnetism. Its main research objective is to develop a method that can overcome the low frequency breakdown problem at low frequencies (practically DC) and still stay stable at microwave frequencies. Based on the scattered field vector Helmholtz equation, the mixed finite element method (mixed FEM) is developed for the broadband electromagnetic field simulation in biological tissues. By imposing Gauss' law as the constraint condition, the mixed FEM overcomes the low frequency breakdown problem without resorting to the quasi-static approximation and remains effective and accurate at high frequencies. Extremely low frequency and high frequency numerical results are demonstrated to verify that the mixed FEM is a stable full-wave electromagnetic field simulation method for the full-bandwidth bioelectromagnetism.


Subject(s)
Electromagnetic Fields , Microwaves , Computer Simulation , Electricity , Finite Element Analysis
16.
Biomed Opt Express ; 11(12): 7132-7149, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33408985

ABSTRACT

Optical clearing methods are widely used for three-dimensional biological information acquisition in the whole organ. However, the imaging quality of cleared tissues is often limited by ununiformed tissue clearing. By combining tissue clearing with mechanical sectioning based whole organ imaging system, we can reduce the influence of light scattering and absorption on the tissue to get isotropic and high resolution in both superficial and deep layers. However, it remains challenging for optical cleared biological tissue to maintain good sectioning property. Here, we developed a clearing method named M-CUBIC (machinable CUBIC), which combined a modified CUBIC method with PNAGA (poly-N-acryloyl glycinamide) hydrogel embedding to transparentize tissue while improving its sectioning property. With high-throughput light-sheet tomography platform (HLTP) and fluorescent micro-optical sectioning tomography (fMOST), we acquired continuous datasets with subcellular resolution from intact mouse brains for single neuron tracing, as well as the fine vascular structure of kidneys. This method can be used to acquire microstructures of multiple types of biological organs with subcellular resolutions, which can facilitate biological research.

17.
Nat Neurosci ; 22(8): 1357-1370, 2019 08.
Article in English | MEDLINE | ID: mdl-31285615

ABSTRACT

The medial prefrontal cortex (mPFC) contains populations of GABAergic interneurons that play different roles in cognition and emotion. Their local and long-range inputs are incompletely understood. We used monosynaptic rabies viral tracers in combination with fluorescence micro-optical sectioning tomography to generate a whole-brain atlas of direct long-range inputs to GABAergic interneurons in the mPFC of male mice. We discovered that three subtypes of GABAergic interneurons in two areas of the mPFC are innervated by same upstream areas. Input from subcortical upstream areas includes cholinergic neurons from the basal forebrain and serotonergic neurons (which co-release glutamate) from the raphe nuclei. Reconstruction of single-neuron morphology revealed novel substantia innominata-anteromedial thalamic nucleus-mPFC and striatum-anteromedial thalamic nucleus-mPFC circuits. Based on the projection logic of individual neurons, we classified cortical and hippocampal input neurons into several types. This atlas provides the anatomical foundation for understanding the functional organization of the mPFC.


Subject(s)
Brain Mapping/methods , Interneurons/physiology , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/cytology , gamma-Aminobutyric Acid/physiology , Animals , Cell Count , Hippocampus/cytology , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Parasympathetic Nervous System/cytology , Parasympathetic Nervous System/physiology , Prosencephalon/anatomy & histology , Prosencephalon/cytology , Raphe Nuclei/cytology , Raphe Nuclei/physiology , Serotonergic Neurons/physiology , Thalamus/cytology , Thalamus/physiology
18.
Sci Rep ; 8(1): 1964, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386656

ABSTRACT

Tissue optical clearing enables imaging deeper in large volumes with high-resolution. Clear T2 is a relatively rapid clearing method with no use of solvents or detergents, hence poses great advantage on preservation of diverse fluorescent labels. However, this method suffers from insufficient tissue transparency, especially for adult mouse brain blocks. In this work, we develop a rapid and versatile clearing method based on Clear T2 , termed RTF (Rapid clearing method based on Triethanolamine and Formamide), aiming for better clearing capability. The results show that RTF can not only efficiently clear embryos, neonatal brains and adult brain blocks, but also preserve fluorescent signal of both endogenous fluorescent proteins and lipophilic dyes, and be compatible with virus labeling and immunostaining. With the good transparency and versatile compatibility, RTF allows visualization and tracing of fluorescent labeling cells and neuronal axons combined with different imaging techniques, showing potentials in facilitating observation of morphological architecture and visualization of neuronal networks.


Subject(s)
Imaging, Three-Dimensional , Optical Imaging , Organ Specificity , Animals , Axons/metabolism , Brain/embryology , Brain/metabolism , Embryo, Mammalian/metabolism , Ethanolamines/chemistry , Fluorescence , Formamides/chemistry , Green Fluorescent Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Rabies virus/metabolism , Staining and Labeling
19.
Biomed Opt Express ; 9(1): 230-244, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29359099

ABSTRACT

Acquiring an accurate orientation reference is a prerequisite for precisely analysing the morphological features of Golgi-stained neurons in the whole brain. However, the same reflective imaging contrast of Golgi staining for morphology and Nissl staining for cytoarchitecture leads to the failure of distinguishing soma morphology and simultaneously co-locate cytoarchitecture. Here, we developed the dual-mode micro-optical sectioning tomography (dMOST) method to simultaneously image the reflective and fluorescent signals in three dimensions. We evaluated the feasibility of real-time fluorescent counterstaining on Golgi-stained brain tissue. With our system, we acquired whole-brain data sets of physiological and pathological Golgi-stained mouse model brains with fluorescence-labelled anatomical annotation at single-neuron resolution. We also obtained the neuronal morphology of macaque monkey brain tissue using this method. The results show that real-time acquisition of the co-located cytoarchitecture reference in the same brain greatly facilitates the precise morphological analysis of Golgi-stained neurons.

20.
Proc Natl Acad Sci U S A ; 115(2): 415-420, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29259118

ABSTRACT

The cholinergic system in the brain plays crucial roles in regulating sensory and motor functions as well as cognitive behaviors by modulating neuronal activity. Understanding the organization of the cholinergic system requires a complete map of cholinergic neurons and their axon arborizations throughout the entire brain at the level of single neurons. Here, we report a comprehensive whole-brain atlas of the cholinergic system originating from various cortical and subcortical regions of the mouse brain. Using genetically labeled cholinergic neurons together with whole-brain reconstruction of optical images at 2-µm resolution, we obtained quantification of the number and soma volume of cholinergic neurons in 22 brain areas. Furthermore, by reconstructing the complete axonal arbors of fluorescently labeled single neurons from a subregion of the basal forebrain at 1-µm resolution, we found that their projections to the forebrain and midbrain showed neuronal subgroups with distinct projection specificity and diverse arbor distribution within the same projection area. These results suggest the existence of distinct subtypes of cholinergic neurons that serve different regulatory functions in the brain and illustrate the usefulness of complete reconstruction of neuronal distribution and axon projections at the mesoscopic level.


Subject(s)
Basal Forebrain/cytology , Brain/cytology , Cerebral Cortex/cytology , Cholinergic Neurons/cytology , Animals , Basal Forebrain/anatomy & histology , Basal Forebrain/diagnostic imaging , Brain/anatomy & histology , Brain/diagnostic imaging , Cell Count , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Mesencephalon/anatomy & histology , Mesencephalon/cytology , Mesencephalon/diagnostic imaging , Mice , Models, Anatomic
SELECTION OF CITATIONS
SEARCH DETAIL
...