Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 20: 473, 2020.
Article in English | MEDLINE | ID: mdl-33005106

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most general malignant tumors. Accumulating evidence implied that long non-coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) participated in the tumorigenesis of CRC. However, the effect of MALAT1 in drug-resistance needed to be further illustrated. METHODS: Levels of MALAT1, microRNA (miR)-324-3p, and a disintegrin and metalloprotease metallopeptidase domain 17 (ADAM17) were detected using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell Counting Kit 8 (CCK-8) was used to assess the half maximal inhibitory concentration (IC50) of oxaliplatin (Ox). Meanwhile, cell proliferation, migration and apoptosis were detected by CCK-8, transwell assay, and flow cytometry, respectively. The interaction between miR-324-3p and MALAT1 or ADAM17 was clarified by dual-luciferase reporter assay. Also, the effect of MALAT1 on tumor growth was detected in xenograft tumor mice treated with Ox. RESULTS: Significant up regulation of MALAT1 and ADAM17, and decrease of miR-324-3p were observed in Ox-resistant CRC tissues and cells. MALAT1 deficiency enhanced the sensitivity of Ox-resistant CRC cells response to Ox, while miR-324-3p repression or ADAM17 acceleration could overturn this effect. Moreover, MALAT1 silencing repressed tumor growth in Ox-treated nude mice. Mechanically, MALAT1 exerted promotion effect on the resistance response to Ox via miR-324-3p/ADAM17 axis in Ox-resistant CRC cells. CONCLUSION: MALAT1 modulated the sensitivity of Ox through ADAM17 in Ox-resistant CRC cells by sponging miR-324-3p, thus MALAT1 might serve as a novel insight for the therapy of CRC.

2.
Genetica ; 147(2): 121-130, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30911860

ABSTRACT

Members of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play diverse roles in plant growth and development, including the guidance of inflorescence architecture and pedicel length. In this work, we identified and characterized the EFPL gene TaEPFL1 from the wheat pistillody mutant HTS-1. Sequence alignment and phylogenetic analysis indicated that TaEPFL1 belongs to the EPFL1 gene. Quantitative real-time RT-PCR analysis showed that the TaEPFL1 gene is expressed at an abnormally high level in pistillody stamens compared with that in pistils and stamens. Heterologous expression of the TaEPFL1 gene in Arabidopsis caused shortened filaments and pedicels and might reduce the level of AtACO2 gene expression. These results suggest that TaEPFL1 plays an important role in the development of stamen and that overexpression of TaEPFL1 results in abnormal stamens. We deduced that the overexpression of the TaEPFL1 gene may contribute to the homeotic transformation of stamens into pistils or pistil-like structures in wheat. These data offer insights into the molecular mechanism of pistillody mutation in wheat.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Developmental , Plant Proteins/genetics , Triticum/genetics , Flowers/growth & development , Plant Proteins/metabolism , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...