Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18660, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907757

ABSTRACT

In this paper, a structured light vision measurement method using a scanning laser line and a positioning laser line is proposed. The novel method enables the scanning laser plane to slide along a slide rail while maintaining intersection with the positioning laser plane, eliminating the need to determine the scanning direction and moving step. During the measurement process, the laser plane equations need to be recalibrated for each new position, so a real-time calibration method is given. Initially, the geometric barycenter method is employed to detect the subpixel coordinates of the light stripe intersection point. Subsequently, these coordinates are projected into the camera coordinate system using the initial equations of the positioning laser plane. Finally, leveraging the normal information of the initial equation of the scanning laser plane and the three-dimensional coordinates of the light stripe intersection point, the real-time calibration of the scanning laser plane equations can be accomplished. The proposed method enables the three-dimensional reconstruction of objects, and its accuracy is verified through measurements on gauge blocks. Experimental results demonstrate that this method achieves precise and stable three-dimensional reconstruction of object surface shape.

2.
Sensors (Basel) ; 23(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616611

ABSTRACT

A multi-line structured light measurement method that combines a single-line and a three-line laser, in which precision sliding rails and displacement measurement equipment are not required, is proposed in this paper. During the measurement, the single-line structured light projects onto the surface of an object and the three-line structured light remains fixed. The single-line laser is moved and intersects with the three-line laser to form three intersection points. The single-line light plane can be solved using the camera coordinates of three intersection points, thus completing the real-time calibration of the scanned light plane. The single-line laser can be scanned at any angle to determine the overall complete three-dimensional (3D) shape of the object during the process. Experimental results show that this method overcomes the difficulty of obtaining information about certain angles and locations and can effectively recover the 3D shape of the object. The measurement system's repetition error is under 0.16 mm, which is sufficient to measure the 3D shapes of complicated workpieces.

3.
PLoS One ; 9(9): e106911, 2014.
Article in English | MEDLINE | ID: mdl-25203507

ABSTRACT

A flexible calibration approach for line structured light vision system is proposed in this paper. Firstly a camera model is established by transforming the points from the 2D image plane to the world coordinate frame, and the intrinsic parameters of camera can be obtained accurately. Then a novel calibration method for structured light projector is presented by moving a planar target with a square pattern randomly, and the method mainly involves three steps: first, a simple linear model is proposed, by which the plane equation of the target at any orientations can be determined based on the square's geometry information; second, the pixel coordinates of the light stripe center on the target images are extracted as the control points; finally, the points are projected into the camera coordinate frame with the help of the intrinsic parameters and the plane equations of the target, and the structured light plane can be determined by fitting these three-dimensional points. The experimental data show that the method has good repeatability and accuracy.


Subject(s)
Image Processing, Computer-Assisted/methods , Light , Pattern Recognition, Automated/methods , Calibration , Models, Theoretical
4.
ScientificWorldJournal ; 2013: 963621, 2013.
Article in English | MEDLINE | ID: mdl-24288516

ABSTRACT

Lens distortion practically presents in a real optical imaging system causing nonuniform geometric distortion in the images and gives rise to additional errors in the vision measurement. In this paper, a planar-dimensions vision measurement method is proposed by improving camera calibration, in which the lens distortion is corrected on the pixel plane of image. The method can be divided into three steps: firstly, the feature points, only in the small central region of the image, are used to get a more accurate perspective projection model; secondly, rather than defining a uniform model, the smoothing spline function is used to describe the lens distortion in the measurement region of image, and two correction functions can be obtained by fitting two deviation surfaces; finally, a measurement method for planar dimensions is proposed, in which accurate magnification factor of imaging system can be obtained by using the correction functions. The effectiveness of the method is demonstrated by applying the proposed method to the test of measuring shaft diameter. Experimental data prove that the accurate planar-dimensions measurements can be performed using the proposed method even if images are deformed by lens distortion.


Subject(s)
Algorithms , Lenses/standards , Optical Imaging/methods , Calibration , Optical Imaging/instrumentation , Optical Imaging/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...