Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2304551, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810137

ABSTRACT

Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.

2.
Cell Prolif ; : e13633, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528645

ABSTRACT

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.

3.
Cell Prolif ; : e13620, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400824

ABSTRACT

Irreversible damage to hair cells (HCs) in the cochlea leads to hearing loss. Cochlear supporting cells (SCs) in the murine cochlea have the potential to differentiate into HCs. Neuron membrane glycoprotein M6B (Gpm6b) as a four-transmembrane protein is a potential regulator of HC regeneration according to our previous research. In this study, we found that AAV-ie-mediated Gpm6b overexpression promoted SC-derived organoid expansion. Enhanced Gpm6b prevented the normal decrease in SC plasticity as the cochlea develops by supporting cells re-entry cell cycle and facilitating the SC-to-HC transformation. Also, overexpression of Gpm6b in the organ of Corti through the round window membrane injection facilitated the trans-differentiation of Lgr5+ SCs into HCs. In conclusion, our results suggest that Gpm6b overexpression promotes HC regeneration and highlights a promising target for hearing repair using the inner ear stem cells combined with AAV.

4.
Mol Ther ; 32(1): 204-217, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37952086

ABSTRACT

Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.


Subject(s)
Deafness , Hearing Loss , Animals , Humans , Mice , Deafness/genetics , Hearing/genetics , Hearing Loss/genetics , Hearing Loss/therapy , Mice, Knockout , Proteins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Stereocilia/metabolism
5.
Cell Prolif ; 56(5): e13458, 2023 May.
Article in English | MEDLINE | ID: mdl-36977657

ABSTRACT

Sensorineural hearing loss a result from hair cell damage, which is irreversible in mammals owing to the lack of hair cell regeneration, but recent researches have shown that Lgr5+ supporting cells are progenitors capable of regenerating hair cells. RPS14 (ribosomal protein S14) is a 40S ribosomal subunit component and is associated with erythrocyte differentiation, and in this study, we used a novel adeno-associated virus-inner ear system to upregulate Rps14 expression in cultured hair cell progenitors and observed an enhancement on their ability to proliferate and differentiate into hair cells. Similarly, Rps14 overexpression in the mice cochlea could promote supporting cells proliferation by activating the Wnt signalling pathway. In addition, over-expressing Rps14 induced hair cells regeneration in the organ of Corti, and lineage tracing showed that the new hair cells had transformed from Lgr5+ progenitors. In conclusion, our analysis reveals the potential role of Rps14 in driving hair cell regeneration in mammalian.


Subject(s)
Ear, Inner , Hair Cells, Auditory , Ribosomal Proteins , Animals , Mice , Animals, Newborn , Cell Differentiation , Cell Proliferation , Ear, Inner/metabolism , Mammals/metabolism , Receptors, G-Protein-Coupled/metabolism , Up-Regulation , Ribosomal Proteins/metabolism
6.
Cell Mol Life Sci ; 80(4): 86, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36917323

ABSTRACT

Mechanosensitive hair cells (HCs) in the cochlear sensory epithelium are critical for sound detection and transduction. Mammalian HCs in the cochlea undergo cytogenesis during embryonic development, and irreversible damage to hair cells postnatally is a major cause of deafness. During the development of the organ of Corti, HCs and supporting cells (SCs) originate from the same precursors. In the neonatal cochlea, damage to HCs activates adjacent SCs to act as HC precursors and to differentiate into new HCs. However, the plasticity of SCs to produce new HCs is gradually lost with cochlear development. Here, we delineate an essential role for the guanine nucleotide exchange factor Net1 in SC trans-differentiation into HCs. Net1 overexpression mediated by AAV-ie in SCs promoted cochlear organoid formation and HC differentiation under two and three-dimensional culture conditions. Also, AAV-Net1 enhanced SC proliferation in Lgr5-EGFPCreERT2 mice and HC generation as indicated by lineage tracing of HCs in the cochleae of Lgr5-EGFPCreERT2/Rosa26-tdTomatoloxp/loxp mice. We further found that the up-regulation of Wnt/ß-catenin and Notch signaling in AAV-Net1-transduced cochleae might be responsible for the SC proliferation and HC differentiation. Also, Net1 overexpression in SCs enhanced SC proliferation and HC regeneration and survival after HC damage by neomycin. Taken together, our study suggests that Net1 might serve as a potential target for HC regeneration and that AAV-mediated gene regulation may be a promising approach in stem cell-based therapy in hearing restoration.


Subject(s)
Cell Transdifferentiation , Hair Cells, Auditory , Animals , Mice , Cell Differentiation/physiology , Cell Proliferation/physiology , Cochlea , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...