Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 29(9): 4324-4338, 2018 09.
Article in English | MEDLINE | ID: mdl-29990175

ABSTRACT

Embedding methods have shown promising performance in multilabel prediction, as they are able to discover the label dependence. However, most methods ignore the correlations between the input and output, such that their learned embeddings are not well aligned, which leads to degradation in prediction performance. This paper presents a formulation for multilabel learning, from the perspective of cross-view learning, that explores the correlations between the input and the output. The proposed method, called Co-Embedding (CoE), jointly learns a semantic common subspace and view-specific mappings within one framework. The semantic similarity structure among the embeddings is further preserved, ensuring that close embeddings share similar labels. Additionally, CoE conducts multilabel prediction through the cross-view $k$ nearest neighborhood ( $k$ NN) search among the learned embeddings, which significantly reduces computational costs compared with conventional decoding schemes. A hashing-based model, i.e., Co-Hashing (CoH), is further proposed. CoH is based on CoE, and imposes the binary constraint on continuous latent embeddings. CoH aims to generate compact binary representations to improve the prediction efficiency by benefiting from the efficient $k$ NN search of multiple labels in the Hamming space. Extensive experiments on various real-world data sets demonstrate the superiority of the proposed methods over the state of the arts in terms of both prediction accuracy and efficiency.

2.
IEEE Trans Cybern ; 47(12): 4275-4288, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27655043

ABSTRACT

Due to the significant reduction in computational cost and storage, hashing techniques have gained increasing interests in facilitating large-scale cross-view retrieval tasks. Most cross-view hashing methods are developed by assuming that data from different views are well paired, e.g., text-image pairs. In real-world applications, however, this fully-paired multiview setting may not be practical. The more practical yet challenging semi-paired cross-view retrieval problem, where pairwise correspondences are only partially provided, has less been studied. In this paper, we propose an unsupervised hashing method for semi-paired cross-view retrieval, dubbed semi-paired discrete hashing (SPDH). In specific, SPDH explores the underlying structure of the constructed common latent subspace, where both paired and unpaired samples are well aligned. To effectively preserve the similarities of semi-paired data in the latent subspace, we construct the cross-view similarity graph with the help of anchor data pairs. SPDH jointly learns the latent features and hash codes with a factorization-based coding scheme. For the formulated objective function, we devise an efficient alternating optimization algorithm, where the key binary code learning problem is solved in a bit-by-bit manner with each bit generated with a closed-form solution. The proposed method is extensively evaluated on four benchmark datasets with both fully-paired and semi-paired settings and the results demonstrate the superiority of SPDH over several other state-of-the-art methods in term of both accuracy and scalability.

3.
Comput Biol Med ; 43(6): 635-48, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23668339

ABSTRACT

Segmentation is one of the crucial problems for the digital human research, as currently digital human datasets are manually segmented by experts with anatomy knowledge. Due to the thin slice thickness of digital human data, the static slices can be regarded as a sequence of temporal deformation of the same slice. This gives light to the method of object contour tracking for the segmentation task for the digital human data. In this paper, we present an adaptive geometric active contour tracking method, based on a feature image of object contour, to segment tissues in digital human data. The feature image is constructed according to the matching degree of object contour points, image variance and gradient, and statistical models of the object and background colors. Utilizing the characteristics of the feature image, the traditional edge-based geometric active contour model is improved to adaptively evolve curve in any direction instead of the single direction. Experimental results demonstrate that the proposed method is robust to automatically handle the topological changes, and is effective for the segmentation of digital human data.


Subject(s)
Databases, Factual , Image Processing, Computer-Assisted/methods , Models, Anatomic , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/instrumentation
4.
Comput Med Imaging Graph ; 35(5): 383-97, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21256710

ABSTRACT

A modified possibilistic fuzzy c-means clustering algorithm is presented for fuzzy segmentation of magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities and noise. By introducing a novel adaptive method to compute the weights of local spatial in the objective function, the new adaptive fuzzy clustering algorithm is capable of utilizing local contextual information to impose local spatial continuity, thus allowing the suppression of noise and helping to resolve classification ambiguity. To estimate the intensity inhomogeneity, the global intensity is introduced into the coherent local intensity clustering algorithm and takes the local and global intensity information into account. The segmentation target therefore is driven by two forces to smooth the derived optimal bias field and improve the accuracy of the segmentation task. The proposed method has been successfully applied to 3 T, 7 T, synthetic and real MR images with desirable results. Comparisons with other approaches demonstrate the superior performance of the proposed algorithm. Moreover, the proposed algorithm is robust to initialization, thereby allowing fully automatic applications.


Subject(s)
Algorithms , Brain/anatomy & histology , Fuzzy Logic , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Cluster Analysis , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...