Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(22): 223202, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877960

ABSTRACT

Attoclock provides a powerful tool for probing the ultrafast electron dynamics in strong laser fields. However, this technique has remained restricted to single electron or sequential double ionized electron dynamics. Here, we propose a novel attoclock scheme with a polarization-gated few-cycle laser pulse and demonstrate its application in timing the correlated-electron emission in strong field double ionization of argon. Our experimental measurements reveal that the correlated-electron emission occurs mainly through two channels with time differences of 234±22 as and 1043±73 as, respectively. Classical model calculations well reproduce the experimental results and deepen our understanding of ultrafast electron correlation dynamics.

2.
Phys Rev Lett ; 125(6): 063202, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32845670

ABSTRACT

We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar^{+}+Ar^{2+} and Ar^{2+}+Ar^{2+} fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.

3.
Phys Rev Lett ; 122(19): 193202, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144971

ABSTRACT

We experimentally investigate the two-dimensional photoelectron momentum spectra of aligned diatomic molecules in an intense laser field. Our results reveal a novel prominent valley structure in the molecular alignment dependence of the high-energy photoelectron spectra along the laser polarization. Resorting to the molecular strong-field approximation and a simple semiclassical analysis, we show that this valley structure stems from the destructive two-center interference of the laser-driven rescattered electrons in diatomic molecules. Based on this two-center interference with aligned diatomic molecules, we demonstrate for the first time a tomographic method to extract the molecular internuclear separation, providing a more straightforward approach of molecular imaging, in comparison with, e.g., laser-induced electron diffraction and fixed-angle broadband laser-driven electron scattering.

4.
Phys Rev Lett ; 119(24): 243203, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29286720

ABSTRACT

In this Letter, we propose a novel laser-induced inelastic diffraction (LIID) scheme based on the intense-field-driven atomic nonsequential double ionization (NSDI) process and demonstrate that, with this LIID approach, the doubly differential cross sections (DDCSs) of the target ions, e.g., Ar^{+} and Xe^{+}, can be accurately extracted from the two-dimensional photoelectron momentum distributions in the NSDI process of the corresponding atoms. The extracted DDCSs exhibit a strong dependence on both the target and the laser intensity, in good agreement with calculated DDCSs from the scattering of free electrons. The LIID scheme may be extended to molecular systems and provides a promising approach for imaging of the gas-phase molecular dynamics induced by a strong laser field with unprecedented spatial and temporal resolution.

5.
Opt Express ; 24(20): 23248-23259, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828389

ABSTRACT

We conceive an improved procedure to determine the laser intensity with the momentum distributions from nonadiabatic tunneling ionization of atoms in the close-to-circularly polarized laser fields. The measurements for several noble gas atoms are in accordance with the semiclassical calculations, where the nonadiabatic effect and the influence of Coulomb potential are included. Furthermore, the high-order above-threshold ionization spectrum in linearly polarized laser fields for Ar is measured and compared with the numerical calculation of the time-dependent Schrödinger equation in the single-active-electron approximation to test the accuracy of the calibrated laser intensity.

6.
Sci Rep ; 6: 27108, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27256904

ABSTRACT

In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

SELECTION OF CITATIONS
SEARCH DETAIL
...