Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
1.
Small ; : e2311818, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837617

ABSTRACT

The exceptional and substantial electron affinity, as well as the excellent chemical and thermal stability of transition metal oxides (TMOs), infuse infinite vitality into multifunctional applications, especially in the field of electromagnetic wave (EMW) absorption. Nonetheless, the suboptimal structural mechanical properties and absence of structural regulation continue to hinder the advancement of TMOs-based aerogels. Herein, a novel 2D tantalum disulfide (2H-TaS2) reduction strategy is demonstrated to synthesize Ta2O5/reduced graphene oxide (rGO) heterointerface aerogels with unique characters. As the prerequisite, the defects, interfaces, and configurations of aerogels are regulated by varying the concentration of 2H-TaS2 to ensure the Ta2O5/rGO heterointerface aerogels with appealing EMW absorption properties such as a minimum reflection loss (RLmin) of -61.93 dB and an effective absorption bandwidth (EAB) of 8.54 GHz (7.80-16.34 GHz). This strategy provides valuable insights for designing advanced EMW absorbers. Meanwhile, the aerogel exhibits favorable thermal insulation performance with a value of 36 mW m-1 K-1, outstanding fire resistance capability, and exceptional mechanical energy dissipation performance, making it promising for applications in the aerospace industry and consumer electronics devices.

2.
J Agric Food Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843452

ABSTRACT

Structural factors that determine the amylolysis of starch-lipid complexes have remained unclear. Understanding the relationship between the structure and amylolysis of starch-lipid complexes is important for the design and preparation of complexes with predictable digestibility. In this study, the multiscale structures and amylolytic properties of complexes formed under different conditions between debranched high-amylose starch (DHAMS) and lauric, myristic, palmitic, and stearic acids were investigated. Higher complexing temperatures facilitated the formation of DHAMS-fatty acid (FA) complexes, especially the more stable type II crystallites. Longer complexing times also promoted the formation of complexes and the type II crystallites, except for DHAMS-lauric acid (LA). Molecular dynamics simulations showed that the binding free energy for the formation of DHAMS-LA complexes (10 kJ/mol) was lower than those for the other three DHAMS-FA complexes (20-50 kJ/mol), accounting for the lower stability of DHAMS-LA complexes at longer complexing times. The rate and extent of enzymatic digestion of the DHAMS-FA complexes were much lower in comparison to those of gelatinized HAMS. Correlation analyses showed that the rate and extent of enzymic digestion of DHAMS-FA complexes were mainly determined by the degree of crystallite perfection of the complexes.

3.
Small ; : e2402841, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693072

ABSTRACT

Developing lightweight composite with reversible switching between microwave (MW) absorption and electromagnetic interference (EMI) shielding is promising yet remains highly challenging due to the completely inconsistent attenuation mechanism for electromagnetic (EM) radiation. Here, a lightweight vanadium dioxide/expanded polymer microsphere composites foam (VO2/EPM) is designed and fabricated with porous structures and 3D VO2 interconnection, which possesses reversible switching function between MW absorption and EMI shielding under thermal stimulation. The VO2/EPM exhibits MW absorption with a broad effective absorption bandwidth of 3.25 GHz at room temperature (25 °C), while provides EMI shielding of 23.1 dB at moderately high temperature (100 °C). This reversible switching performance relies on the porous structure and tunability of electrical conductivity, complex permittivity, and impedance matching, which are substantially induced by the convertible crystal structure and electronic structure of VO2. Finite element simulation is employed to qualitatively investigate the change in interaction between EM waves and VO2/EPM before and after the phase transition. Moreover, the application of VO2/EPM is demonstrated with a reversible switching function in controlling wireless transmission on/off, showcasing its excellent cycling stability. This kind of smart material with a reversible switching function shows great potential in next-generation electronic devices.

4.
Chemistry ; : e202400537, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703390

ABSTRACT

With the popularization of 5G technology and artificial intelligence, thermally conductive epoxies with self-healing ability will be widely used in flexible electronic materials. Although many compounds containing both performances have been synthesized, there is little systematic theory to explain this coordination mechanism. In this paper, alkyl chains of different lengths were introduced to epoxies for discussing the thermally conductive, the self-healing performance, and the synergistic effect. A series of electronic-grade biphenyl epoxies (4,4'-bis(oxiran-2-ylmethoxy)-1,1'-biphenyl (1), 4,4'-bis(2-(oxiran-2-yl)ethoxy)-1,1'-biphenyl (2), 4,4'-bis(3-(oxiran-2-yl)propoxy)-1,1'-biphenyl (3), and 4,4'-bis(4-(oxiran-2-yl)butoxy)-1,1'-biphenyl (4) were synthesized and characterized. Furthermore, they were cured with decanedioic acid to produce polymers. Results showed that alkyl chains can both affect the two properties, and the epoxies suitable for specific application scenarios can be prepared by adjusting the length of alkyl chains. In terms of thermal conductivity, compound 1 was a most promising material. However, compound 4 was expected to be utilized in flexible electronic devices because of its acceptable thermal conductivity, self-healing ability, transparency, and flexibility.

5.
Chin Herb Med ; 16(2): 239-247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706823

ABSTRACT

Constipation is common in the diseases of the digestive system in clinics. With the change in diet structure and the increase in life pressure, the prevalence rate increases year by year. In traditional Chinese medicine (TCM), the location of the disease of constipation is in the large intestine, which is related to the dysfunction of lung, spleen, liver, kidney and other viscera. Its pathogenesis is conductive dysfunction of large intestine. Based on the theory, Shouhui Tongbian Capsule (SHTB) is composed of eight traditional Chinese medicines, including Polygoni multiflori Radix (Heshouwu in Chinese), Aloe (Luhui in Chinese), Cassiae Semen (Juemingzi in Chinese), Ginseng Radix et Rhizoma (Renshen in Chinese), Lycii Fructus (Gouqizi in Chinese), Asini Corii Colla (Ejiao in Chinese), Aurantii Fructus Immaturus (Zhishi in Chinese), and Atractylodis Macrocephalae Rhizoma (Baizhu in Chinese), which could help to release excessive turbid, and nourishing yin and supplementing qi in the treatment. This study has been carried out to review the latest advances of SHTB in the treatment of constipation. The results showed that significant effect of SHTB was found in the treatment of constipation, such as functional constipation, and constipation associated with tumor chemotherapy, colitis, type 2 diabetes and chronic cardiac failure. Besides, obvious adverse reactions were not observed. SHTB could effectively treat five types of constipation, provide direction for the future exploration of SHTB in the treatment of other types of constipation.

6.
Adv Sci (Weinh) ; : e2401944, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704733

ABSTRACT

2D magnetic materials hold substantial promise in information storage and neuromorphic device applications. However, achieving a 2D material with high Curie temperature (TC), environmental stability, and multi-level magnetic states remains a challenge. This is particularly relevant for spintronic devices, which require multi-level resistance states to enhance memory density and fulfil low power consumption and multi-functionality. Here, the synthesis of 2D non-layered triangular and hexagonal magnetite (Fe3O4) nanosheets are proposed with high TC and environmental stability, and demonstrate that the ultrathin triangular nanosheets show broad antiphase boundaries (bAPBs) and sharp antiphase boundaries (sAPBs), which induce multiple spin precession modes and multi-level resistance. Conversely, the hexagonal nanosheets display slip bands with sAPBs associated with pinning effects, resulting in magnetic-field-driven spin texture reversal reminiscent of "0" and "1" switching signals. In support of the micromagnetic simulation, direct explanation is offer to the variation in multi-level resistance under a microwave field, which is ascribed to the multi-spin texture magnetization structure and the randomly distributed APBs within the material. These novel 2D magnetite nanosheets with unique spin textures and spin dynamics provide an exciting platform for constructing real multi-level storage devices catering to emerging information storage and neuromorphic computing requirements.

7.
Small ; : e2402265, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757418

ABSTRACT

The emerging applications of thermally conductive elastomer composites in modern electronic devices for heat dissipation require them to maintain both high toughness and resilience under thermomechanical stresses. However, such a combination of thermal conductivity and desired mechanical characteristics is extremely challenging to achieve in elastomer composites. Here this long-standing mismatch is resolved via regulating interfacial structure and dynamics response. This regulation is realized both by tuning the molecular weight of the dangling chains in the polymer networks and by silane grafting of the fillers, thereby creating a broad dynamic-gradient interfacial region comprising of entanglements. These entanglements can provide the slipping topological constraint that allows for tension equalization between and along the chains, while also tightening into rigid knots to prevent chain disentanglement upon stretching. Combined with ultrahigh loading of aluminum-fillers (90 wt%), this design provides a low Young's modulus (350.0 kPa), high fracture toughness (831.5 J m-2), excellent resilience (79%) and enhanced thermal conductivity (3.20 W m-1 k-1). This work presents a generalizable preparation strategy toward engineering soft, tough, and resilient high-filled elastomer composites, suitable for complex environments, such as automotive electronics, and wearable devices.

8.
Nano Lett ; 24(21): 6386-6394, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743576

ABSTRACT

Adhesion ability and interfacial thermal transfer capacity at soft/hard interfaces are of critical importance to a wide variety of applications, ranging from electronic packaging and soft electronics to batteries. However, these two properties are difficult to obtain simultaneously due to their conflicting nature at soft/hard interfaces. Herein, we report a polyurethane/silicon interface with both high adhesion energy (13535 J m-2) and low thermal interfacial resistance (0.89 × 10-6 m2 K W-1) by regulating hydrogen interactions at the interface. This is achieved by introducing a soybean-oil-based epoxy cross-linker, which can destroy the hydrogen bonds in polyurethane networks and meanwhile can promote the formation of hydrogen bonds at the polyurethane/silicon interface. This study provides a comprehensive understanding of enhancing adhesion energy and reducing interfacial thermal resistance at soft/hard interfaces, which offers a promising perspective to tailor interfacial properties in various material systems.

9.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645138

ABSTRACT

Glia derived secretory factors play diverse roles in supporting the development, physiology, and stress responses of the central nervous system (CNS). Through transcriptomics and imaging analyses, we have identified Obp44a as one of the most abundantly produced secretory proteins from Drosophila CNS glia. Protein structure homology modeling and Nuclear Magnetic Resonance (NMR) experiments reveal Obp44a as a fatty acid binding protein (FABP) with a high affinity towards long-chain fatty acids in both native and oxidized forms. Further analyses demonstrate that Obp44a effectively infiltrates the neuropil, traffics between neuron and glia, and is secreted into hemolymph, acting as a lipid chaperone and scavenger to regulate lipid and redox homeostasis in the developing brain. In agreement with this essential role, deficiency of Obp44a leads to anatomical and behavioral deficits in adult animals and elevated oxidized lipid levels. Collectively, our findings unveil the crucial involvement of a noncanonical lipid chaperone to shuttle fatty acids within and outside the brain, as needed to maintain a healthy brain lipid environment. These findings could inspire the design of novel approaches to restore lipid homeostasis that is dysregulated in CNS diseases.

10.
Front Nutr ; 11: 1359989, 2024.
Article in English | MEDLINE | ID: mdl-38646105

ABSTRACT

Introduction: With improvements in living conditions, modern individuals exhibit a pronounced inclination towards a high-fat diet, largely because of its distinctive gustatory appeal. However, the association between high-fat diets and metabolic complications has largely been ignored, and metabolic diseases such as obesity and non-alcoholic fatty liver disease now constitute a major public health concern. Because high-fat diets increase the risk of metabolic diseases, a thorough investigation into the impact of high-fat diets on gut microbiota and metabolism is required. Methods: We utilize 16S rRNA sequencing and untargeted metabolomics analysis to demonstrate that SD rats fed a high-fat diet exhibited marked alterations in gut microbiota and plasma, intestinal metabolism. Results: Changes in gut microbiota included a decreased abundance at phylum level for Verrucomicrobiota, and a decreased abundance at genus level for Akkermansia, Ralstonia, Bacteroides, and Faecalibacterium. Additionally, significant changes were observed in both intestinal and plasma metabolite levels, including an upregulation of bile acid metabolism, an upregulation of glucose-lipid metabolism, and increased levels of metabolites such as norlithocholic acid, cholic acid, D-fructose, D-mannose, fructose lactate, and glycerophosphocholine. We also investigated the correlations between microbial communities and metabolites, revealing a significant negative correlation between Akkermansia bacteria and cholic acid. Discussion: Overall, our findings shed light on the relationship between symbiotic bacteria associated with high-fat diets and metabolic biomarkers, and they provide insights for identifying novel therapeutic approaches to mitigate disease risks associated with a high-fat diet.

11.
Biomed Pharmacother ; 174: 116548, 2024 May.
Article in English | MEDLINE | ID: mdl-38599064

ABSTRACT

BACKGROUND: Various heart diseases ultimately lead to chronic heart failure (CHF). In CHF, the inflammatory response is associated with pyroptosis, which is mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome. Fu Xin decoction (FXD) is commonly used in clinical practice to treat CHF and improve inflammatory conditions. However, the specific pharmacological mechanisms of action for FXD in these processes have yet to be fully understood. PURPOSE: The objective of this study was to examine the protective mechanism of FXT against CHF, both in H9c2 cells and mice. METHOD: A CHF mouse model was established, and the effect of FXD was observed via gavage. Cardiac function was evaluated using echocardiography, while serum BNP and LDH levels were analyzed to assess the severity of CHF. Hematoxylin and eosin staining (H&E) and Masson staining were performed to evaluate myocardial pathological changes, and TdT-mediated dUTP Nick-End Labeling staining was used to detect DNA damage. Additionally, doxorubicin was utilized to induce myocardial cell injury in H9c2 cells, establishing a relevant model. CCK8 was used to observe cell viability and detect LDH levels in the cell supernatant. Subsequently, the expression of pyroptosis-related proteins was detected using immunohistochemistry, immunofluorescence, and western blotting. Finally, the pharmacological mechanism of FXD against CHF was further validated by treating H9c2 cells with an NLRP3 activator and inducing NLRP3 overexpression. RESULT: According to current research findings, echocardiography demonstrated a significant improvement of cardiac function by FXD, accompanied by reduced levels of BNP and LDH, indicating the amelioration of cardiac injury in CHF mice. FXD exhibited the ability to diminish serum CRP and MCP inflammatory markers in CHF mice. The results of HE and Masson staining analyses revealed a significant reduction in pathological damage of the heart tissue following FXD treatment. The CCK8 assay demonstrated the ability of FXD to enhance H9c2 cell viability, improve cell morphology, decrease LDH levels in the cell supernatant, and alleviate cell damage. Immunohistochemistry, Western blotting, and immunofluorescence staining substantiated the inhibitory effect of FXD on the NLRP3/caspase-1/GSDMD pyroptosis signaling pathway in both CHF and H9c2 cell injury models. Ultimately, the administration of the NLRP3 activator (Nigericin) and the overexpression of NLRP3 counteract the effects of FXD on cardiac protection and pyroptosis inhibition in vitro. CONCLUSION: FXD exhibits a cardioprotective effect, improving CHF and alleviating pyroptosis by inhibiting the NLRP3/caspase-1/GSDMD pathway.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Mice , Caspase 1/drug effects , Caspase 1/metabolism , Cell Line , Chronic Disease , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Gasdermins/drug effects , Gasdermins/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/drug effects , Signal Transduction/drug effects
12.
J Ethnopharmacol ; 330: 118244, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38663781

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW: To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS: Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS: To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Liver Diseases , Animals , Humans , Bupleurum/chemistry , Chronic Disease , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Liver Diseases/drug therapy , Liver Diseases/metabolism , Medicine, Chinese Traditional/methods , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/chemistry
13.
Sci Total Environ ; 931: 172567, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38643871

ABSTRACT

Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.


Subject(s)
Antioxidants , Chlorella , Microalgae , Oxidative Stress , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Oxidative Stress/drug effects , Spirulina/chemistry
14.
Cell Signal ; 119: 111173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604343

ABSTRACT

Targeted therapy based on BRD4 and MYC shows promise due to their well-researched oncogenic functions in cancer, but their tumor-suppressive roles are less understood. In this study, we employ a systematic approach to delete exons that encode the low-complexity domain (LCD) of BRD4L in cells by using CRISPR-Cas9. In particular, the deletion of exon 14 (BRD4-E14) results in cellular morphological changes towards spindle-shaped and loosely packed. BRD4-E14 deficient cells show increased cell migration and reduced cell adhesion. The expression of S100A10 was significantly increased in cells lacking E14. BRD4L binds with MYC via the E14-encoded region of the LCD to inhibit the expression of S100A10. In cancer tissues, there is a positive correlation between BRD4 and MYC, while both of these proteins are negatively associated with S100A10 expression. Finally, knocking out the BRD4-E14 region or MYC promotes tumor growth in vivo. Together, these data support a tumor-suppressive role of BRD4L and MYC in some contexts. This discovery emphasizes the significance of a discreetly design and precise patient recruitment in clinical trials that testing cancer therapy based BRD4 and MYC.


Subject(s)
Cell Cycle Proteins , Cell Movement , Proto-Oncogene Proteins c-myc , S100 Proteins , Transcription Factors , Humans , Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , S100 Proteins/metabolism , S100 Proteins/genetics , Animals , Cell Line, Tumor , Mice , Neoplasm Invasiveness , Mice, Nude , Gene Expression Regulation, Neoplastic , Cell Proliferation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Female , Bromodomain Containing Proteins
15.
Langmuir ; 40(15): 8108-8114, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38568421

ABSTRACT

Although intense efforts have been devoted to the development of thermally conductive epoxy resin composites, most previous works ignore the importance of the contact thermal resistance between epoxy resin composites and mating surfaces. Here, we report on epoxy resin/hexagonal boron nitride (h-BN) composites, which show low contact thermal resistance with the contacting surface by tuning adhesion energy. We found that adhesion energy increases with increasing the ratio of soybean-based epoxy resin/amino silicone oil and h-BN contents. The adhesion energy has a negative correlation with the contact thermal resistance; that is, enhancing the adhesion energy will lead to reduced contact thermal resistance. The contact thermal conductance increases with the h-BN contents and is low to 0.025 mm2·K/W for the epoxy resin/60 wt % h-BN composites, which is consistent with the theoretically calculated value. By investigating the wettability and chain dynamics of the epoxy resin/h-BN composites, we confirm that the low contact thermal resistance stems from the increased intermolecular interaction between the epoxy resin chains. The present study provides a practical approach for the development of epoxy resin composites with enhanced thermal conductivity and reduced contact thermal resistance, aiming for effective thermal management of electronics.

16.
Int Immunopharmacol ; 131: 111824, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38461633

ABSTRACT

BACKGROUND: Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE: The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS: In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1ß and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION: Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.


Subject(s)
Dermatitis , Extracellular Traps , Psoriasis , Sesquiterpenes , Animals , Mice , Imiquimod/pharmacology , Administration, Cutaneous , Extracellular Traps/metabolism , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Sesquiterpenes/therapeutic use , Sesquiterpenes/pharmacology , Dermatitis/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Disease Models, Animal , Mice, Inbred BALB C
17.
J Control Release ; 369: 114-127, 2024 May.
Article in English | MEDLINE | ID: mdl-38521167

ABSTRACT

This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.


Subject(s)
Anti-Bacterial Agents , Diclofenac , Keratitis , Levofloxacin , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Keratitis/drug therapy , Keratitis/microbiology , Animals , Levofloxacin/therapeutic use , Levofloxacin/administration & dosage , Diclofenac/administration & dosage , Diclofenac/therapeutic use , Reactive Oxygen Species/metabolism , Drug Liberation , Biofilms/drug effects , Contact Lenses , Rabbits , Eye Burns/chemically induced , Eye Burns/drug therapy , Humans , Drug Delivery Systems , Eye Infections, Bacterial/drug therapy , Burns, Chemical/drug therapy , Burns, Chemical/therapy
18.
Chemistry ; 30(27): e202400719, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38462510

ABSTRACT

A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.

19.
J Gastroenterol ; 59(5): 411-423, 2024 05.
Article in English | MEDLINE | ID: mdl-38461467

ABSTRACT

BACKGROUND: The tumor microbiome has been characterized in several malignancies; however, no previous studies have investigated its role in intrahepatic cholangiocarcinoma (ICC). Hence, we explored the tumor microbiome and its association with prognosis in ICC. METHODS: One hundred and twenty-one ICC tumor samples and 89 adjacent normal tissues were profiled by 16S rRNA sequencing. Microbial differences between tumor and adjacent nontumoral liver tissues were assessed. Tumor microbial composition was then evaluated to detect its association with prognosis. Finally, a risk score calculated by the tumor microbiota was accessed by the least absolute shrinkage and selector operator method (Lasso) to predict prognosis of ICC. RESULTS: The tumor microbiome displayed a greater diversity than that in adjacent nontumoral liver tissues. Tumor samples were characterized by a higher abundance of Firmicutes, Actinobacteria, Bacteroidetes, and Acidobacteriota. Higher tumor microbial α diversity was associated with lymph node metastasis and predicted shortened overall survival (OS) and recurrence-free survival (RFS). A total of 11 bacteria were selected to generate the risk score by Lasso. This score showed potential in predicting OS, and was an independent risk factor for OS. CONCLUSION: In conclusion, our study characterized the tumor microbiome and revealed its role in predicting prognosis in ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , RNA, Ribosomal, 16S/genetics , Prognosis , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Retrospective Studies
20.
Genet Mol Biol ; 47(1): e20230099, 2024.
Article in English | MEDLINE | ID: mdl-38488526

ABSTRACT

Bougainvillea is a popular ornamental plant. Although Bougainvillea is abundant in germplasm resources, cultivars and flower colors, there is no rare blue colour varieties, due to the absence of delphinidin-based anthocyanins. This study analyzed the Bougainvillea leaf and bract transcriptome to select hosts of genetic transformation that would be suitable for the accumulation of delphinidin. A total of 36 gigabyte (GB) of raw data was obtained by transcriptome sequencing, with 4,058 significantly differentially expressed genes, including 1,854 upregulated and 2,204 downregulated genes. Annotation of these genes was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Through annotation, two CHS genes, one F3H gene, one DFR gene, and one F3'H gene involved in the delphinidin biosynthesis pathway were identified. The expression levels of these genes and total flavonoid content in the bracts of six Bougainvillea varieties were examined through quantitative real-time PCR and spectrophotometry, respectively. Through the comprehensive evaluation based on membership function method, the suitable host order for a blue-hued Bougainvillea transgene is Singapore White>Elizabeth Angus>Ratana Yellow>China Beauty>Orange King>Brilliant Variegata. Thus, Singapore White variety was the most appropriate transgene host for blue-hued Bougainvillea. The results of this study provide a reference for the directed breeding of blue-hued Bougainvillea.

SELECTION OF CITATIONS
SEARCH DETAIL
...