Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ergonomics ; 66(12): 1829-1844, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36576165

ABSTRACT

Fatigue risk in humans has few biomathematical models, and existing biomathematical models have many shortcomings. We developed a biomathematical model of fatigue risk based on the concept of energy to quantify human alertness from the perspective of energy and used alertness to characterise human psychological fatigue risk. The model allows mathematical modelling of activity processes that concern sleep intensity and quality and distinguishes between intrinsic exertion in the waking state and workload exertion in the workload state. This alertness and fatigue risk biomathematical model predicts changes in human alertness and fatigue risk indices at any point in the day. We applied numerical simulation and model analysis to five cases to validate the potential value of the alertness energy fatigue risk biomathematical model. Practitioner summary: To overcome the shortcomings of current biomathematical models that evaluate fatigue risk, this study developed a biomathematical model of fatigue risk based on the concept of energy to quantify human alertness from the perspective of energy and used alertness to characterise human fatigue risk.Abbreviations: S: The sleep homeostatic process; C: The circadian process; SAFTE: The sleep activity fatigue and task effectiveness model; FAID: The fatigue audit interdyne model; EEG: Electroencephalogram.


Subject(s)
Models, Biological , Sleep , Humans , Attention , Circadian Rhythm , Risk Assessment , Fatigue , Wakefulness
2.
BMC Public Health ; 22(1): 1843, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183066

ABSTRACT

BACKGROUND: In response to the COVID-19 outbreak, the Civil Aviation Administration of China (CAAC) has formulated Implementation Measures for Exemption of Crew Duty Periods and Flight Time Restrictions during the COVID-19 Outbreak. This exemption policy imposes temporary deviations from the approved crew duty periods and flight time restrictions for some transport airlines and regulates the use of multiple crews for continuous round-trip flights. However, no research has been conducted on flight crew fatigue under this exemption policy. That is, the exemption policy lacks theoretical analysis and scientific validation. METHODS: Firstly, flight plans for international flights under both the exemption and the CCAR-121 Policy schemes (with three flight departure scenarios: early morning, midday and evening) are designed, and flight plans are simulated based on the SAFE model. The Karolinska Sleepiness Scale (KSS) and the PVT objective test of alertness, both of which are commonly used in the aviation industry, are then selected for use in an empirical experimental study of flight crew fatigue on two flights subject to the exemption and CCAR-121 policies. RESULTS: The SAFE model simulation found that the fatigue risk results based on flight crews for flights departing in the early morning (4:00), at noon (12:00) and in the evening (20:00) indicate that the fatigue risk levels of flight crews operating under the exemption policy are overwhelmingly lower than or similar to those operating under the CCAR-121 policy. However, there were a few periods when the fatigue risk of crews flying under the exemption policy was higher than that of crews flying under the CCAR-121 policy, but at these times, the crews flying under both policies were either at a lower level of fatigue risk or were in the rest phase of their shifts. In the experimental study section, 40 pilots from each of the early morning (4:00), noon (12:00) and evening (20:00) departures operating under the exemption policy were selected to collect KSS scale data and PVT test data during their duty periods, and a total of 120 other pilots operating under the CCAR-121 policy were selected for the same experiment. First, the KSS scale data results found that flight pilots, whether flying under the exemption policy or under the CCAR-121 policy, had overall similar KSS scores, maintained KSS scores below the fatigue risk threshold (i.e., KSS score < 6) during the flights and that the empirical KSS data and the model simulation results from the KSS data were overall identical at the test nodes during the flight and had nearly identical trends. Finally, the results of the PVT objective test indicators showed that the overall change in 1/RT of the crews flying under the exemption policy was less than or similar to that of the crews flying under the CCAR-121 policy, while the maximum change in 1/RT of the crews under both policies was between 1 and 1.5. This indicates that the overall level of alertness of the crew flying under the exemption policy is higher than or similar to that of the crew flying under the CCAR-121 policy, while the change in alertness level of the crew before and after the mission is relatively small when flying under either policy. CONCLUSION: Based on the model simulation results and the results of the empirical study, it was verified that the overall fatigue risk level of flight crews operating under the exemption policy is lower than or similar to the fatigue risk level of flight crews operating under the CCAR-121 policy. Therefore, the exemption policy in response to the COVID-19 outbreak does not result in an overall increase in the level of flight crew fatigue risk compared to the original CCAR-121 policy.


Subject(s)
COVID-19 , Work Schedule Tolerance , Aircraft , Disease Outbreaks , Fatigue/epidemiology , Humans , Policy , Risk Assessment , Sleep/physiology , Sleep Deprivation/epidemiology , Work Schedule Tolerance/physiology
3.
Brain Behav ; 12(4): e2529, 2022 04.
Article in English | MEDLINE | ID: mdl-35318818

ABSTRACT

BACKGROUND: Caffeine is often used as a stimulant during fatigue, but the standard of characteristic physiological indicators of the effect of caffeine on neuromuscular fatigue has not been unified. The purpose of this systematic review and meta-analysis is to summarize current experimental findings on the effects of caffeine on physiological indexes before and after neuromuscular fatigue, identify some characteristic neuromuscular physiological indexes to assess the potential effects of caffeine. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-analyses are followed. We systematically searched PubMed, Google academic, and Web of Science for randomized controlled trials. We searched for studies on caffeine's (i) effects on neuromuscular fatigue and (ii) the influence of physiological indexes changes. Meta-analysis was performed for standardized mean differences (SMD) between caffeine and placebo trials in individual studies. RESULTS: The meta-analysis indicated that caffeine significantly improves voluntary activation (VA) (SMD = 1.46;95%CI:0.13, 2.79; p < .00001), PTw (SMD = 1.11, 95%CI: -1.61, 3.84; p < .00001), and M-wave (SMD = 1.10, 95%CI: -0.21, 2.41; p < .00001), and a significant difference (p = .003) on measures of Peak Power (PP), and insignificant difference on measures of heart rate (HR) (I2  = 0.0, p = .84) and Maximal oxygen uptake (VO2 ) (I2  = 0.0, p = .76). CONCLUSION: The analysis showed that caffeine intake had a relatively large effect on VA, potentiated twitch (PTw), M-wave, which can be used as characteristic indexes of caffeine's impact on neuromuscular fatigue. This conclusion tends to indicate the effects of caffeine on neuromuscular fatigue during endurance running or jumping or muscle bending and stretching. The caffeine intake had a big effect on the electromyogram (EMG) and peak power (PP), and its effect role needs to be further verified, this conclusion tends to indicate the effect of caffeine on neuromuscular fatigue during jumping or elbow bending moment movements. HR, VO2 , maximal voluntary contraction (MVC) cannot be used as the characteristic indexes of caffeine on neuromuscular fatigue. This conclusion tends to indicate the effect of caffeine on neuromuscular fatigue during endurance exercise. However, the results of meta-analysis are based on limited evidence and research scale, as well as individual differences of participants and different physical tasks, so it is necessary to interpret the results of meta-analysis cautiously. Therefore, future research needs to explore other physiological indicators and their indicative effects in order to determine effective and accurate characteristic indicators of caffeine on neuromuscular fatigue.


Subject(s)
Caffeine , Central Nervous System Stimulants , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Eating , Electromyography , Humans , Muscle Fatigue
SELECTION OF CITATIONS
SEARCH DETAIL
...