Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2016: 1462916, 2016.
Article in English | MEDLINE | ID: mdl-27190985

ABSTRACT

Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia.


Subject(s)
Chlorophyta/genetics , DNA, Algal/genetics , RNA, Ribosomal, 18S/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Sequence Analysis, DNA/methods , Base Sequence , Korea , Molecular Sequence Data , Phylogeny
2.
Indian J Microbiol ; 55(4): 447-455, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26543271

ABSTRACT

In recent years, microalgae have attracted considerable interest as a biofuel resource owing to their rapid growth, tolerance to harsh conditions, and ability to accumulate a large amount of triacylglycerols (TAGs). However, the economic effectiveness of algal biofuel is still low. In this study, we attempted to increase oil production of the microalga Scenedesmus quadricauda by elevating intracellular malonyl-CoA and glycerol-3-phosphate (G3P) pools. To increase intracellular oil content, yeast-derived genes encoding acetyl-CoA carboxylase (ACC1), glycerol kinase (GPD1), and glycerol-3-phosphate dehydrogenase (GUT1) were overexpressed under the control of CaMV 35S and NOS promoters with SV40 large T antigen components. Fatty acid profiling, G3P content, and the number of cells with high oil content were analyzed by gas chromatography-mass spectrometry, G3P assay kit, and flow cytometry, respectively. Overexpression of ACC1 increased the total fatty acid content by 1.6-fold. Overexpression of GPD1 and GUT1 increased intracellular G3P content by 1.6- and 1.9-fold, respectively. Multi-gene expression of ACC1, GPD1, and GUT1 increased the number of cells with high oil content by 1.45-fold compared with that observed with the wild-type. This study is the first to report increased oil production by overexpression of the key genes (ACC1, GPD1, and GUT1) for TAG biosynthesis in microalgae.

3.
Bioprocess Biosyst Eng ; 35(1-2): 135-43, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21947703

ABSTRACT

Insulin, in nature, has a stimulatory effect on microorganisms. These effects include the acceleration of sugar metabolism, triacylglycerol anabolism, growth rate, and formation of oils. We also observed that insulin may cause indirect activation of triacylglycerol lipase by forcing the cell to permanently require an energy source. Thus, cells can consume all of their accumulated internal fuel sources such as lipids, proteins, and carbohydrates. After studying the effects of using two types of insulin (Humulin 70/30, and human insulin expressed in yeast) at different concentrations on microalgae (Chlorella sp.), we found that with certain concentrations of insulin (1:3.3 ml unit Humulin 70/30 per ml; 1:2.6 ml unit yeast insulin per ml), there was an increase in algal growth rate and decrease in cell size. We therefore studied the effect of insulin under conditions of lipase inhibition by Triton WR 1339 (Tyloxapol), which was used at different concentrations with and without insulin. We found strong regression in the growth rate with increasing Triton concentrations. However, we also observed that the cell size under the effect of Triton and Triton-insulin was larger than the cell size under the effect of insulin alone, and also larger than for control cells. Also, the oil content of the Triton-insulin cells was higher than those of the control cells or the cells under the effect of insulin alone.


Subject(s)
Carbohydrate Metabolism/physiology , Chlorella/drug effects , Chlorella/metabolism , Insulin/administration & dosage , Oils/metabolism , Carbohydrate Metabolism/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...