Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Affect Disord ; 355: 40-49, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38552911

ABSTRACT

BACKGROUND: Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. METHODS: The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. RESULTS: From the 29 topics identified, we identified 6 risk topics for depression: 'No Expectations', 'Sleep', 'Mental Therapy', 'Haircut', 'Studying', and 'Coursework'. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. LIMITATIONS: Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. CONCLUSION: This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.


Subject(s)
Deep Learning , Speech , Humans , Smartphone , Depression/diagnosis , Speech Recognition Software
2.
Acta Paediatr ; 113(6): 1236-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501583

ABSTRACT

AIM: This study aimed to classify quiet sleep, active sleep and wake states in preterm infants by analysing cardiorespiratory signals obtained from routine patient monitors. METHODS: We studied eight preterm infants, with an average postmenstrual age of 32.3 ± 2.4 weeks, in a neonatal intensive care unit in the Netherlands. Electrocardiography and chest impedance respiratory signals were recorded. After filtering and R-peak detection, cardiorespiratory features and motion and cardiorespiratory interaction features were extracted, based on previous research. An extremely randomised trees algorithm was used for classification and performance was evaluated using leave-one-patient-out cross-validation and Cohen's kappa coefficient. RESULTS: A sleep expert annotated 4731 30-second epochs (39.4 h) and active sleep, quiet sleep and wake accounted for 73.3%, 12.6% and 14.1% respectively. Using all features, and the extremely randomised trees algorithm, the binary discrimination between active and quiet sleep was better than between other states. Incorporating motion and cardiorespiratory interaction features improved the classification of all sleep states (kappa 0.38 ± 0.09) than analyses without these features (kappa 0.31 ± 0.11). CONCLUSION: Cardiorespiratory interactions contributed to detecting quiet sleep and motion features contributed to detecting wake states. This combination improved the automated classifications of sleep states.


Subject(s)
Infant, Premature , Sleep , Humans , Infant, Newborn , Sleep/physiology , Male , Female , Electrocardiography
3.
J Med Internet Res ; 25: e45233, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37578823

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) affects millions of people worldwide, but timely treatment is not often received owing in part to inaccurate subjective recall and variability in the symptom course. Objective and frequent MDD monitoring can improve subjective recall and help to guide treatment selection. Attempts have been made, with varying degrees of success, to explore the relationship between the measures of depression and passive digital phenotypes (features) extracted from smartphones and wearables devices to remotely and continuously monitor changes in symptomatology. However, a number of challenges exist for the analysis of these data. These include maintaining participant engagement over extended time periods and therefore understanding what constitutes an acceptable threshold of missing data; distinguishing between the cross-sectional and longitudinal relationships for different features to determine their utility in tracking within-individual longitudinal variation or screening individuals at high risk; and understanding the heterogeneity with which depression manifests itself in behavioral patterns quantified by the passive features. OBJECTIVE: We aimed to address these 3 challenges to inform future work in stratified analyses. METHODS: Using smartphone and wearable data collected from 479 participants with MDD, we extracted 21 features capturing mobility, sleep, and smartphone use. We investigated the impact of the number of days of available data on feature quality using the intraclass correlation coefficient and Bland-Altman analysis. We then examined the nature of the correlation between the 8-item Patient Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the features using the individual-mean correlation, repeated measures correlation, and linear mixed effects model. Furthermore, we stratified the participants based on their behavioral difference, quantified by the features, between periods of high (depression) and low (no depression) PHQ-8 scores using the Gaussian mixture model. RESULTS: We demonstrated that at least 8 (range 2-12) days were needed for reliable calculation of most of the features in the 14-day time window. We observed that features such as sleep onset time correlated better with PHQ-8 scores cross-sectionally than longitudinally, whereas features such as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but worse cross-sectionally. Finally, we found that participants could be separated into 3 distinct clusters according to their behavioral difference between periods of depression and periods of no depression. CONCLUSIONS: This work contributes to our understanding of how these mobile health-derived features are associated with depression symptom severity to inform future work in stratified analyses.


Subject(s)
Depressive Disorder, Major , Telemedicine , Wearable Electronic Devices , Humans , Smartphone , Cross-Sectional Studies , Depressive Disorder, Major/diagnosis , Retrospective Studies
4.
J Atten Disord ; 27(9): 1040-1050, 2023 07.
Article in English | MEDLINE | ID: mdl-37269091

ABSTRACT

OBJECTIVE: We assessed the feasibility and validity of remote researcher-led administration and self-administration of modified versions of two cognitive tasks sensitive to ADHD, a four-choice reaction time task (Fast task) and a combined Continuous Performance Test/Go No-Go task (CPT/GNG), through a new remote measurement technology system. METHOD: We compared the cognitive performance measures (mean and variability of reaction times (MRT, RTV), omission errors (OE) and commission errors (CE)) at a remote baseline researcher-led administration and three remote self-administration sessions between participants with and without ADHD (n = 40). RESULTS: The most consistent group differences were found for RTV, MRT and CE at the baseline researcher-led administration and the first self-administration, with 8 of the 10 comparisons statistically significant and all comparisons indicating medium to large effect sizes. CONCLUSION: Remote administration of cognitive tasks successfully captured the difficulties with response inhibition and regulation of attention, supporting the feasibility and validity of remote assessments.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/psychology , Pilot Projects , Reaction Time/physiology , Attention/physiology , Neuropsychological Tests , Cognition/physiology
5.
NPJ Digit Med ; 6(1): 25, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36806317

ABSTRACT

Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants (67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants' study apps and Fitbit usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys) took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate survival models showed participants' age, ownership and brand of smartphones, and recruitment sites to be associated with retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and balanced data collection from diverse populations.

6.
JMIR Ment Health ; 10: e42866, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36692937

ABSTRACT

BACKGROUND: Remote measurement technologies (RMTs) such as smartphones and wearables can help improve treatment for depression by providing objective, continuous, and ecologically valid insights into mood and behavior. Engagement with RMTs is varied and highly context dependent; however, few studies have investigated their feasibility in the context of treatment. OBJECTIVE: A mixed methods design was used to evaluate engagement with active and passive data collection via RMT in people with depression undergoing psychotherapy. We evaluated the effects of treatment on 2 different types of engagement: study attrition (engagement with study protocol) and patterns of missing data (engagement with digital devices), which we termed data availability. Qualitative interviews were conducted to help interpret the differences in engagement. METHODS: A total of 66 people undergoing psychological therapy for depression were followed up for 7 months. Active data were gathered from weekly questionnaires and speech and cognitive tasks, and passive data were gathered from smartphone sensors and a Fitbit (Fitbit Inc) wearable device. RESULTS: The overall retention rate was 60%. Higher-intensity treatment (χ21=4.6; P=.03) and higher baseline anxiety (t56.28=-2.80, 2-tailed; P=.007) were associated with attrition, but depression severity was not (t50.4=-0.18; P=.86). A trend toward significance was found for the association between longer treatments and increased attrition (U=339.5; P=.05). Data availability was higher for active data than for passive data initially but declined at a sharper rate (90%-30% drop in 7 months). As for passive data, wearable data availability fell from a maximum of 80% to 45% at 7 months but showed higher overall data availability than smartphone-based data, which remained stable at the range of 20%-40% throughout. Missing data were more prevalent among GPS location data, followed by among Bluetooth data, then among accelerometry data. As for active data, speech and cognitive tasks had lower completion rates than clinical questionnaires. The participants in treatment provided less Fitbit data but more active data than those on the waiting list. CONCLUSIONS: Different data streams showed varied patterns of missing data, despite being gathered from the same device. Longer and more complex treatments and clinical characteristics such as higher baseline anxiety may reduce long-term engagement with RMTs, and different devices may show opposite patterns of missingness during treatment. This has implications for the scalability and uptake of RMTs in health care settings, the generalizability and accuracy of the data collected by these methods, feature construction, and the appropriateness of RMT use in the long term.

7.
Comput Methods Programs Biomed ; 227: 107204, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371974

ABSTRACT

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a progressive inflammatory and neurodegenerative disease of the central nervous system affecting over 2.5 million people globally. In-clinic six-minute walk test (6MWT) is a widely used objective measure to evaluate the progression of MS. Yet, it has limitations such as the need for a clinical visit and a proper walkway. The widespread use of wearable devices capable of depicting patients' activity profiles has the potential to assess the level of MS-induced disability in free-living conditions. METHODS: In this work, we extracted 96 features in different temporal granularities (from minute-level to day-level) from wearable data and explored their utility in estimating 6MWT scores in a European (Italy, Spain, and Denmark) MS cohort of 337 participants over an average of 10 months' duration. We combined these features with participants' demographics using three regression models including elastic net, gradient boosted trees and random forest. In addition, we quantified the individual feature's contribution using feature importance in these regression models, linear mixed-effects models, generalized estimating equations, and correlation-based feature selection (CFS). RESULTS: The results showed promising estimation performance with R2 of 0.30, which was derived using random forest after CFS. This model was able to distinguish the participants with low disability from those with high disability. Furthermore, we observed that the minute-level (≤ 8 minutes) step count, particularly those capturing the upper end of the step count distribution, had a stronger association with 6MWT. The use of a walking aid was indicative of ambulatory function measured through 6MWT. CONCLUSIONS: This study demonstrates the utility of wearables devices in assessing ambulatory impairments in people with MS in free-living conditions and provides a basis for future investigation into the clinical relevance.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Wearable Electronic Devices , Humans , Multiple Sclerosis/diagnosis , Social Conditions , Walking/physiology
8.
JMIR Mhealth Uhealth ; 10(10): e40667, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36194451

ABSTRACT

BACKGROUND: Gait is an essential manifestation of depression. However, the gait characteristics of daily walking and their relationships with depression have yet to be fully explored. OBJECTIVE: The aim of this study was to explore associations between depression symptom severity and daily-life gait characteristics derived from acceleration signals in real-world settings. METHODS: We used two ambulatory data sets (N=71 and N=215) with acceleration signals collected by wearable devices and mobile phones, respectively. We extracted 12 daily-life gait features to describe the distribution and variance of gait cadence and force over a long-term period. Spearman coefficients and linear mixed-effects models were used to explore the associations between daily-life gait features and depression symptom severity measured by the 15-item Geriatric Depression Scale (GDS-15) and 8-item Patient Health Questionnaire (PHQ-8) self-reported questionnaires. The likelihood-ratio (LR) test was used to test whether daily-life gait features could provide additional information relative to the laboratory gait features. RESULTS: Higher depression symptom severity was significantly associated with lower gait cadence of high-performance walking (segments with faster walking speed) over a long-term period in both data sets. The linear regression model with long-term daily-life gait features (R2=0.30) fitted depression scores significantly better (LR test P=.001) than the model with only laboratory gait features (R2=0.06). CONCLUSIONS: This study indicated that the significant links between daily-life walking characteristics and depression symptom severity could be captured by both wearable devices and mobile phones. The daily-life gait patterns could provide additional information for predicting depression symptom severity relative to laboratory walking. These findings may contribute to developing clinical tools to remotely monitor mental health in real-world settings.


Subject(s)
Depression , Gait , Acceleration , Aged , Humans , Retrospective Studies , Walking
9.
Biomedicines ; 10(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36289925

ABSTRACT

Epilepsy is one of the most common neurological disorders, characterized by the occurrence of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks. In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength, eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic functional networks over several days prior to seizure occurrence. We infer the networks using long-term electroencephalographic recordings from 12 people with epilepsy. We found that brain network metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of 12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure occurrence is significantly different compared to the corresponding distributions on all previous days. Our results suggest that brain network metrics computed fromelectroencephalographic recordings could potentially be used to characterize brain network changes that occur prior to seizures, and ultimately contribute to seizure warning systems.

10.
JMIR Ment Health ; 9(3): e34898, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35275087

ABSTRACT

BACKGROUND: The mobility of an individual measured by phone-collected location data has been found to be associated with depression; however, the longitudinal relationships (the temporal direction of relationships) between depressive symptom severity and phone-measured mobility have yet to be fully explored. OBJECTIVE: We aimed to explore the relationships and the direction of the relationships between depressive symptom severity and phone-measured mobility over time. METHODS: Data used in this paper came from a major EU program, called the Remote Assessment of Disease and Relapse-Major Depressive Disorder, which was conducted in 3 European countries. Depressive symptom severity was measured with the 8-item Patient Health Questionnaire (PHQ-8) through mobile phones every 2 weeks. Participants' location data were recorded by GPS and network sensors in mobile phones every 10 minutes, and 11 mobility features were extracted from location data for the 2 weeks prior to the PHQ-8 assessment. Dynamic structural equation modeling was used to explore the longitudinal relationships between depressive symptom severity and phone-measured mobility. RESULTS: This study included 2341 PHQ-8 records and corresponding phone-collected location data from 290 participants (age: median 50.0 IQR 34.0, 59.0) years; of whom 215 (74.1%) were female, and 149 (51.4%) were employed. Significant negative correlations were found between depressive symptom severity and phone-measured mobility, and these correlations were more significant at the within-individual level than the between-individual level. For the direction of relationships over time, Homestay (time at home) (φ=0.09, P=.01), Location Entropy (time distribution on different locations) (φ=-0.04, P=.02), and Residential Location Count (reflecting traveling) (φ=0.05, P=.02) were significantly correlated with the subsequent changes in the PHQ-8 score, while changes in the PHQ-8 score significantly affected (φ=-0.07, P<.001) the subsequent periodicity of mobility. CONCLUSIONS: Several phone-derived mobility features have the potential to predict future depression, which may provide support for future clinical applications, relapse prevention, and remote mental health monitoring practices in real-world settings.

11.
JMIR Mhealth Uhealth ; 10(1): e28095, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35089148

ABSTRACT

BACKGROUND: Most smartphones and wearables are currently equipped with location sensing (using GPS and mobile network information), which enables continuous location tracking of their users. Several studies have reported that various mobility metrics, as well as home stay, that is, the amount of time an individual spends at home in a day, are associated with symptom severity in people with major depressive disorder (MDD). Owing to the use of small and homogeneous cohorts of participants, it is uncertain whether the findings reported in those studies generalize to a broader population of individuals with MDD symptoms. OBJECTIVE: The objective of this study is to examine the relationship between the overall severity of depressive symptoms, as assessed by the 8-item Patient Health Questionnaire, and median daily home stay over the 2 weeks preceding the completion of a questionnaire in individuals with MDD. METHODS: We used questionnaire and geolocation data of 164 participants with MDD collected in the observational Remote Assessment of Disease and Relapse-Major Depressive Disorder study. The participants were recruited from three study sites: King's College London in the United Kingdom (109/164, 66.5%); Vrije Universiteit Medisch Centrum in Amsterdam, the Netherlands (17/164, 10.4%); and Centro de Investigación Biomédica en Red in Barcelona, Spain (38/164, 23.2%). We used a linear regression model and a resampling technique (n=100 draws) to investigate the relationship between home stay and the overall severity of MDD symptoms. Participant age at enrollment, gender, occupational status, and geolocation data quality metrics were included in the model as additional explanatory variables. The 95% 2-sided CIs were used to evaluate the significance of model variables. RESULTS: Participant age and severity of MDD symptoms were found to be significantly related to home stay, with older (95% CI 0.161-0.325) and more severely affected individuals (95% CI 0.015-0.184) spending more time at home. The association between home stay and symptoms severity appeared to be stronger on weekdays (95% CI 0.023-0.178, median 0.098; home stay: 25th-75th percentiles 17.8-22.8, median 20.9 hours a day) than on weekends (95% CI -0.079 to 0.149, median 0.052; home stay: 25th-75th percentiles 19.7-23.5, median 22.3 hours a day). Furthermore, we found a significant modulation of home stay by occupational status, with employment reducing home stay (employed participants: 25th-75th percentiles 16.1-22.1, median 19.7 hours a day; unemployed participants: 25th-75th percentiles 20.4-23.5, median 22.6 hours a day). CONCLUSIONS: Our findings suggest that home stay is associated with symptom severity in MDD and demonstrate the importance of accounting for confounding factors in future studies. In addition, they illustrate that passive sensing of individuals with depression is feasible and could provide clinically relevant information to monitor the course of illness in patients with MDD.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Humans , Recurrence , Smartphone , Surveys and Questionnaires , United Kingdom
12.
Pattern Recognit ; 123: 108403, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34720200

ABSTRACT

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of 95.3 % , a sensitivity of 100 % and a specificity of 90.6 % , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.

13.
BMC Psychiatry ; 21(1): 435, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34488697

ABSTRACT

BACKGROUND: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes a clinical illness Covid-19, has had a major impact on mental health globally. Those diagnosed with major depressive disorder (MDD) may be negatively impacted by the global pandemic due to social isolation, feelings of loneliness or lack of access to care. This study seeks to assess the impact of the 1st lockdown - pre-, during and post - in adults with a recent history of MDD across multiple centres. METHODS: This study is a secondary analysis of an on-going cohort study, RADAR-MDD project, a multi-centre study examining the use of remote measurement technology (RMT) in monitoring MDD. Self-reported questionnaire and passive data streams were analysed from participants who had joined the project prior to 1st December 2019 and had completed Patient Health and Self-esteem Questionnaires during the pandemic (n = 252). We used mixed models for repeated measures to estimate trajectories of depressive symptoms, self-esteem, and sleep duration. RESULTS: In our sample of 252 participants, 48% (n = 121) had clinically relevant depressive symptoms shortly before the pandemic. For the sample as a whole, we found no evidence that depressive symptoms or self-esteem changed between pre-, during- and post-lockdown. However, we found evidence that mean sleep duration (in minutes) decreased significantly between during- and post- lockdown (- 12.16; 95% CI - 18.39 to - 5.92; p <  0.001). We also found that those experiencing clinically relevant depressive symptoms shortly before the pandemic showed a decrease in depressive symptoms, self-esteem and sleep duration between pre- and during- lockdown (interaction p = 0.047, p = 0.045 and p <  0.001, respectively) as compared to those who were not. CONCLUSIONS: We identified changes in depressive symptoms and sleep duration over the course of lockdown, some of which varied according to whether participants were experiencing clinically relevant depressive symptoms shortly prior to the pandemic. However, the results of this study suggest that those with MDD do not experience a significant worsening in symptoms during the first months of the Covid - 19 pandemic.


Subject(s)
COVID-19 , Depressive Disorder, Major , Adult , Cohort Studies , Communicable Disease Control , Depression , Depressive Disorder, Major/epidemiology , Humans , SARS-CoV-2 , Technology
14.
JMIR Mhealth Uhealth ; 9(7): e29840, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34328441

ABSTRACT

BACKGROUND: Research in mental health has found associations between depression and individuals' behaviors and statuses, such as social connections and interactions, working status, mobility, and social isolation and loneliness. These behaviors and statuses can be approximated by the nearby Bluetooth device count (NBDC) detected by Bluetooth sensors in mobile phones. OBJECTIVE: This study aimed to explore the value of the NBDC data in predicting depressive symptom severity as measured via the 8-item Patient Health Questionnaire (PHQ-8). METHODS: The data used in this paper included 2886 biweekly PHQ-8 records collected from 316 participants recruited from three study sites in the Netherlands, Spain, and the United Kingdom as part of the EU Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) study. From the NBDC data 2 weeks prior to each PHQ-8 score, we extracted 49 Bluetooth features, including statistical features and nonlinear features for measuring the periodicity and regularity of individuals' life rhythms. Linear mixed-effect models were used to explore associations between Bluetooth features and the PHQ-8 score. We then applied hierarchical Bayesian linear regression models to predict the PHQ-8 score from the extracted Bluetooth features. RESULTS: A number of significant associations were found between Bluetooth features and depressive symptom severity. Generally speaking, along with depressive symptom worsening, one or more of the following changes were found in the preceding 2 weeks of the NBDC data: (1) the amount decreased, (2) the variance decreased, (3) the periodicity (especially the circadian rhythm) decreased, and (4) the NBDC sequence became more irregular. Compared with commonly used machine learning models, the proposed hierarchical Bayesian linear regression model achieved the best prediction metrics (R2=0.526) and a root mean squared error (RMSE) of 3.891. Bluetooth features can explain an extra 18.8% of the variance in the PHQ-8 score relative to the baseline model without Bluetooth features (R2=0.338, RMSE=4.547). CONCLUSIONS: Our statistical results indicate that the NBDC data have the potential to reflect changes in individuals' behaviors and statuses concurrent with the changes in the depressive state. The prediction results demonstrate that the NBDC data have a significant value in predicting depressive symptom severity. These findings may have utility for the mental health monitoring practice in real-world settings.


Subject(s)
Cell Phone , Depression , Bayes Theorem , Depression/diagnosis , Depression/epidemiology , Humans , Longitudinal Studies , Social Isolation
15.
NPJ Digit Med ; 4(1): 81, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33986465

ABSTRACT

The implementation of governmental Non-Pharmaceutical Interventions (NPIs) has been the primary means of controlling the spread of the COVID-19 disease. One of the intended effects of these NPIs has been to reduce population mobility. Due to the huge costs of implementing these NPIs, it is essential to have a good understanding of their efficacy. Using aggregated mobility data per country, released by Apple and Google we investigated the proportional contribution of NPIs to the magnitude and rate of mobility changes at a multi-national level. NPIs with the greatest impact on the magnitude of mobility change were lockdown measures; declaring a state of emergency; closure of businesses and public services and school closures. NPIs with the greatest effect on the rate of mobility change were implementation of lockdown measures and limitation of public gatherings. As confirmed by chi-square and cluster analysis, separately recorded NPIs like school closure and closure of businesses and public services were closely correlated with each other, both in timing and occurrence. This suggests that the observed significant NPI effects are mixed with and amplified by their correlated NPI measures. We observed direct and similar effects of NPIs on both Apple and Google mobility data. In addition, although Apple and Google data were obtained by different methods they were strongly correlated indicating that they are reflecting overall mobility on a country level. The availability of this data provides an opportunity for governments to build timely, uniform and cost-effective mechanisms to monitor COVID-19 or future pandemic countermeasures.

16.
JMIR Mhealth Uhealth ; 9(4): e24604, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33843591

ABSTRACT

BACKGROUND: Sleep problems tend to vary according to the course of the disorder in individuals with mental health problems. Research in mental health has associated sleep pathologies with depression. However, the gold standard for sleep assessment, polysomnography (PSG), is not suitable for long-term, continuous monitoring of daily sleep, and methods such as sleep diaries rely on subjective recall, which is qualitative and inaccurate. Wearable devices, on the other hand, provide a low-cost and convenient means to monitor sleep in home settings. OBJECTIVE: The main aim of this study was to devise and extract sleep features from data collected using a wearable device and analyze their associations with depressive symptom severity and sleep quality as measured by the self-assessed Patient Health Questionnaire 8-item (PHQ-8). METHODS: Daily sleep data were collected passively by Fitbit wristband devices, and depressive symptom severity was self-reported every 2 weeks by the PHQ-8. The data used in this paper included 2812 PHQ-8 records from 368 participants recruited from 3 study sites in the Netherlands, Spain, and the United Kingdom. We extracted 18 sleep features from Fitbit data that describe participant sleep in the following 5 aspects: sleep architecture, sleep stability, sleep quality, insomnia, and hypersomnia. Linear mixed regression models were used to explore associations between sleep features and depressive symptom severity. The z score was used to evaluate the significance of the coefficient of each feature. RESULTS: We tested our models on the entire dataset and separately on the data of 3 different study sites. We identified 14 sleep features that were significantly (P<.05) associated with the PHQ-8 score on the entire dataset, among them awake time percentage (z=5.45, P<.001), awakening times (z=5.53, P<.001), insomnia (z=4.55, P<.001), mean sleep offset time (z=6.19, P<.001), and hypersomnia (z=5.30, P<.001) were the top 5 features ranked by z score statistics. Associations between sleep features and PHQ-8 scores varied across different sites, possibly due to differences in the populations. We observed that many of our findings were consistent with previous studies, which used other measurements to assess sleep, such as PSG and sleep questionnaires. CONCLUSIONS: We demonstrated that several derived sleep features extracted from consumer wearable devices show potential for the remote measurement of sleep as biomarkers of depression in real-world settings. These findings may provide the basis for the development of clinical tools to passively monitor disease state and trajectory, with minimal burden on the participant.


Subject(s)
Depressive Disorder, Major , Wearable Electronic Devices , Depression/diagnosis , Depression/epidemiology , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Humans , Netherlands , Sleep , Spain , United Kingdom
17.
J Med Internet Res ; 22(9): e19992, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32877352

ABSTRACT

BACKGROUND: In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. OBJECTIVE: We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)-base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. METHODS: We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. RESULTS: We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. CONCLUSIONS: RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus Infections/psychology , Data Collection , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/psychology , Smartphone , Social Isolation , Telemedicine , Wearable Electronic Devices , Adolescent , Adult , Aged , Aged, 80 and over , Body Mass Index , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Denmark/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Mobile Applications , Monitoring, Physiologic , Netherlands/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Social Media , Spain/epidemiology , United Kingdom/epidemiology , Young Adult
18.
J Clin Monit Comput ; 33(1): 65-75, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29644558

ABSTRACT

To non-invasively predict fluid responsiveness, respiration-induced pulse amplitude variation (PAV) in the photoplethysmographic (PPG) signal has been proposed as an alternative to pulse pressure variation (PPV) in the arterial blood pressure (ABP) signal. However, it is still unclear how the performance of the PPG-derived PAV is site-dependent during surgery. The aim of this study is to compare finger- and forehead-PPG derived PAV in their ability to approach the value and trend of ABP-derived PPV. Furthermore, this study investigates four potential confounding factors, (1) baseline variation, (2) PPV, (3) ratio of respiration and heart rate, and (4) perfusion index, which might affect the agreement between PPV and PAV. In this work, ABP, finger PPG, and forehead PPG were continuously recorded in 29 patients undergoing major surgery in the operating room. A total of 91.2 h data were used for analysis, from which PAV and PPV were calculated and compared. We analyzed the impact of the four factors using a multiple linear regression (MLR) analysis. The results show that compared with the ABP-derived PPV, finger-derived PAV had an agreement of 3.2 ± 5.1%, whereas forehead-PAV had an agreement of 12.0 ± 9.1%. From the MLR analysis, we found that baseline variation was a factor significantly affecting the agreement between PPV and PAV. After correcting for respiration-induced baseline variation, the agreements for finger- and forehead-derived PAV were improved to reach an agreement of - 1.2 ± 3.8% and 3.3 ± 4.8%, respectively. To conclude, finger-derived PAV showed better agreement with ABP-derived PPV compared to forehead-derived PAV. Baseline variation was a factor that significantly affected the agreement between PPV and PAV. By correcting for the baseline variation, improved agreements were obtained for both the finger and forehead, and the difference between these two agreements was diminished. The tracking abilities for both finger- and forehead-derived PAV still warrant improvement for wide use in clinical practice. Overall, our results show that baseline-corrected finger- and forehead-derived PAV may provide a non-invasive alternative for PPV.


Subject(s)
Blood Pressure , Operating Rooms , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Aged , Arterial Pressure , Female , Fingers , Forehead , Heart Rate , Humans , Male , Middle Aged , Regression Analysis , Respiration , Time Factors
19.
Physiol Meas ; 38(12): 2101-2121, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29064375

ABSTRACT

OBJECTIVE: Arterial pulse pressure variation (PPV) is widely used for predicting fluid responsiveness and supporting fluid management in the operating room and intensive care unit. Available PPV algorithms have been typically validated for fluid responsiveness during episodes of hemodynamic stability. Yet, little is known about the performance of PPV algorithms during surgery, where fast changes of the blood pressure may affect the robustness of the presented PPV value. This work provides a comprehensive understanding of how various existing algorithmic designs affect the robustness of the presented PPV value during surgery, and proposes additional processing for the pulse pressure signal before calculating PPV. APPROACH: We recorded arterial blood pressure waveforms from 23 patients undergoing major abdominal surgery. To evaluate the performance, we designed three clinically relevant metrics. Main results and Significance: The results show that all algorithms performed well during episodes of hemodynamic stability. Moreover, it is demonstrated that the proposed processing helps improve the robustness of PPV during the entire course of surgery.


Subject(s)
Algorithms , Blood Pressure Determination/methods , Blood Pressure , Monitoring, Physiologic/methods , Abdomen/surgery , Electrocardiography , Humans , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...