Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(47): 8397-8401, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37983182

ABSTRACT

We presented a method for synthesizing allylic chiral hydrazones from 1,4-disubstituted 1,3-dienes and hydrazones through a (R)-DTBM-Segphos-Pd(0)-catalyzed hydrohydrazonation reaction. This transformation has a wide range of substrates and good functional group tolerance. The desired products were obtained in medium to high yield and good regio- and enantioselectivity. Synthetic transformation of the products into various nitrogen-containing chiral compounds was demonstrated.

2.
J Am Chem Soc ; 143(29): 11171-11179, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34260212

ABSTRACT

Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-ß-d-6didoHepp-(1→4)-ß-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging ß-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of ß-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.


Subject(s)
Campylobacter jejuni/chemistry , Fluorides/chemical synthesis , Polysaccharides, Bacterial/chemistry , Pyrans/chemical synthesis , Carbohydrate Conformation , Fluorides/chemistry , Glycosylation , Pyrans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...