Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35625777

ABSTRACT

We demonstrate a working prototype of an optical breast imaging system involving parallel-plate architecture and a dual-direction scanning scheme designed in combination with a mammography machine; this system was validated in a pilot study to demonstrate its application in imaging healthy and malignant breasts in a clinical environment. The components and modules of the self-developed imaging system are demonstrated and explained, including its measuring architecture, scanning mechanism, and system calibration, and the reconstruction algorithm is presented. Additionally, the evaluation of feature indices that succinctly demonstrate the corresponding transmission measurements may provide insight into the existence of malignant tissue. Moreover, five cases are presented including one subject without disease (a control measure), one benign case, one suspected case, one invasive ductal carcinoma, and one positive case without follow-up treatment. A region-of-interest analysis demonstrated significant differences in absorption between healthy and malignant breasts, revealing the average contrast between the abnormalities and background tissue to exceed 1.4. Except for ringing artifacts, the average scattering property of the structure densities was 0.65-0.85 mm-1.

2.
Magn Reson Imaging ; 28(5): 721-38, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20418040

ABSTRACT

Constrained energy minimization (CEM) has proven highly effective for hyperspectral (or multispectral) target detection and classification. It requires a complete knowledge of the desired target signature in images. This work presents "Unsupervised CEM (UCEM)," a novel approach to automatically target detection and classification in multispectral magnetic resonance (MR) images. The UCEM involves two processes, namely, target generation process (TGP) and CEM. The TGP is a fuzzy-set process that generates a set of potential targets from unknown information and then applies these targets to be desired targets in CEM. Finally, two sets of images, namely, computer-generated phantom images and real MR images, are used in the experiments to evaluate the effectiveness of UCEM. Experimental results demonstrate that UCEM segments a multispectral MR image much more effectively than either Functional MRI of the Brain's (FMRIB's) automated segmentation tool or fuzzy C-means does.


Subject(s)
Algorithms , Artificial Intelligence , Brain Neoplasms/pathology , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Fuzzy Logic , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
3.
Comput Med Imaging Graph ; 34(4): 251-68, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20044236

ABSTRACT

Magnetic resonance imaging (MRI) is a valuable instrument in medical science owing to its capabilities in soft tissue characterization and 3D visualization. A potential application of MRI in clinical practice is brain parenchyma classification. This work proposes a novel approach called "Unsupervised Linear Discriminant Analysis (ULDA)" to classify and segment the three major tissues, i.e. gray matter (GM), white matter (WM) and cerebral spinal fluid (CSF), from a multi-spectral MR image of the human brain. The ULDA comprises two processes, namely Target Generation Process (TGP) and Linear Discriminant Analysis (LDA) classification. TGP is a fuzzy-set process that generates a set of potential targets from unknown information, and applies these targets to train the optimal division boundary by LDA, such that three tissues GM, WM and CSF are separated. Finally, two sets of images, namely computer-generated phantom images and real MR images are used in the experiments to evaluate the effectiveness of ULDA. Experiment results reveal that UDLA segments a multi-spectral MR image much more effectively than either FMRIB's Automated Segmentation Tool (FAST) or Fuzzy C-means (FC).


Subject(s)
Algorithms , Brain Neoplasms/pathology , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Artificial Intelligence , Computer Simulation , Discriminant Analysis , Humans , Image Enhancement/methods , Models, Biological , Models, Statistical , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...