Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Anal Chem ; 96(15): 5741-5745, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38573003

ABSTRACT

Fucosylation is an important structural feature of glycans and plays an essential role in the regulation of glycoprotein functions. Fucosylation can be classified into core- (CF) and antenna-fucosylation (AF, also known as (sialyl-) Lewis) based on the location on N-glycans, and they perform distinct biological functions. In this study, core- and antenna-fucosylated N-glycans on human serum glycoproteins that hold great clinical application values were systematically characterized at the site-specific level using StrucGP combined with the recently developed fucosylation assignment method. The results showed that fucosylation was widely distributed on serum glycoproteins, with 50% of fucosylated glycopeptides modified by AF N-glycans, 37% by CF N-glycans, and 13% by dual-fucosylated N-glycans. Interestingly, CF and AF N-glycans preferred to modify different groups of serum glycoproteins with different tissue origins and were involved in distinctive biological processes. Specifically, AF N-glycoproteins are mainly from the liver and participated in complement activation, blood coagulation, and endopeptidase activities, while CF N-glycoproteins originate from diverse tissues and are mainly involved in cell adhesion and signaling transduction. These data further enhanced our understanding of fucosylation on circulation glycoproteins.


Subject(s)
Glycoproteins , Liver , Humans , Glycoproteins/chemistry , Glycosylation , Liver/metabolism , Polysaccharides/chemistry , Fucose/chemistry
2.
Anal Biochem ; 680: 115318, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37696464

ABSTRACT

Normal liquefaction of semen is one of the key steps to ensure the smooth progress of fertilization, and glycosylation has been reported to be involved in the whole process of fertilization. Till now, it is still unclear whether and how glycosylation changes during the liquefaction process of semen. In this study, by performing a glycoproteomic analysis of human semen with the liquefaction process (liquefaction time of semen: 0 min vs 30 min) using our recently developed StrucGP software combined with the Tandem Mass Tags (TMT) based quantification, we identified 25 intact glycopeptides (IGPs) from 10 glycoproteins in semen that were significantly changed during liquefaction, including 23 up-regulated and two down-regulated. Among the 23 up-regulated glycopeptides, half were modified with sialylated glycans, suggesting that sialylated glycans may play a key role in the semen liquefaction process. The data provide an invaluable resource for further studies on the role of glycosylation during semen liquefaction.


Subject(s)
Body Fluids , Semen , Humans , Glycopeptides , Glycosylation , Polysaccharides
3.
J Proteome Res ; 22(9): 2803-2813, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37549151

ABSTRACT

Aging-related salivary gland degeneration usually causes poor oral health. Periductal fibrosis frequently occurs in the submandibular gland of the elderly. Transforming growth factor ß1 (TGF-ß1) is the primary driving factor for fibrosis, which exhibits an increase in the fibrotic submandibular gland tissue. This study aimed to investigate the effects of TGF-ß1 on the human submandibular gland (HSG) cell secretory function and its influences on aquaporin 5 (AQP5) expressions and distribution. We found that TGF-ß1 reduces the protein secretion amount of HSG and leads to the abundance alteration of 151 secretory proteins. Data are available via ProteomeXchange with the identifier PXD043185. The majority of HSG secretory proteins (84.11%) could be matched to the human saliva proteome. Meanwhile, TGF-ß1 enhances the expression of COL4A2, COL5A1, COL7A1, COL1A1, COL2A1, and α-SMA, hinting that TGF-ß1 possesses the potential to drive HSG fibrosis-related events. Besides, TGF-ß1 also attenuates the AQP5 expression and its membrane distribution in HSGs. The percentage for TGF-ß1-induced AQP5 reduction (52.28%) is much greater than that of the TGF-ß1-induced secretory protein concentration reduction (16.53%). Taken together, we concluded that TGF-ß1 triggers salivary hypofunction via attenuating protein secretion and AQP5 expression in HSGs, which may be associated with TGF-ß1-driven fibrosis events in HSGs.


Subject(s)
Aquaporin 5 , Submandibular Gland , Transforming Growth Factor beta1 , Humans , Aquaporin 5/genetics , Aquaporin 5/metabolism , Collagen Type VII/metabolism , Saliva/metabolism , Submandibular Gland/cytology , Submandibular Gland/metabolism , Transforming Growth Factor beta1/pharmacology
4.
Anal Bioanal Chem ; 415(26): 6431-6439, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37644321

ABSTRACT

Low abundance and heterogeneity of N-glycosylation at the peptide level poses a great challenge to the structural and functional analysis of glycosylation in the field of glycobiology. Solving this conundrum requires a sufficient and specific method for intact N-glycopeptide enrichment. Using the C18 or HLB desalting column followed by the mixed-mode strong anion exchange (MAX) or hydrophilic interaction chromatography (HILIC) glycopeptide enrichment column are commonly applied approaches for sample preparation of intact N-glycopeptides from complex samples. Herein, we compared the effects of different combinations of two desalting columns and two enrichment columns using equal amounts of mouse brain tissues from the same source. The results revealed the C18 column was a bit superior to the HLB column, and the MAX and HILIC columns were complementary on intact N-glycopeptides enrichment. Additionally, the results also demonstrated that enriching glycopeptides using a HILIC column followed by a MAX column from the flow-through solution got a better enrichment performance than the reversed order. Based on these results, the sequential enrichment of glycopeptides using HILIC and then MAX columns could maximize the enrichment performance of intact N-glycopeptides, and therefore is an option for in-depth analysis of site-specific glycoproteome.


Subject(s)
Glycopeptides , Proteome , Animals , Mice , Chromatography, Liquid/methods , Glycopeptides/chemistry , Glycosylation , Hydrophobic and Hydrophilic Interactions
5.
Carbohydr Res ; 531: 108894, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421876

ABSTRACT

Bisecting N-glycan is known to be a metastasis suppressor and plays a regulatory role in the biosynthesis of N-glycans. Previous studies have shown that bisecting N-glycans are capable of modulating both the branching and terminal modifications of glycans. However, these effects have been investigated mainly by glycomic approaches and it remains unclear how they alter when glycans are attached to different glycosites of proteins. Here, we systematically investigated the regulatory roles of bisecting N-glycans in human HK-2 cells using StrucGP, a strategy we developed for structural interpretation of site-specific N-glycans on glycoproteins. The glycoproteomics analysis showed that most of bisecting N-glycans are complex type and often occur in company with core fucosylation. With the overexpression and knockdown of MGAT3, the only enzyme responsible for bisecting N-glycan synthesis, we found that bisecting N-glycans can impact the biosynthesis of N-glycans from multiple aspects, including glycan types, branching, sialylation, fucosylation (different effects for core and terminal fucosylation) as well as the presence of terminal N-acetylglucosamine. Furthermore, gene ontology analysis suggested that most proteins with bisecting N-glycans located in the extracellular region or membrane, where they function mostly in cell adhesion, extracellular matrix regulation and cell signaling. Finally, we showed that overexpression of bisecting N-glycans had a broad impact on the protein expressions of HK-2 cells, involving multiple biological processes. Taken together, our work systematically demonstrated the expression profiles of bisecting N-glycans, and their regulatory effects on the biosynthesis of N-glycans and protein expressions, which provide valuable information for the functional elucidation of bisecting N-glycans.


Subject(s)
Glycoproteins , Polysaccharides , Humans , Glycosylation , Glycoproteins/chemistry , Polysaccharides/chemistry
6.
Anal Chem ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36633944

ABSTRACT

O-Acetylation is a common modification of sialic acid, playing a significant role in glycoprotein stability, immune response, and cell development. Due to the lack of efficient methods for direct analysis of O-acetylated sialoglycopeptides (O-AcSGPs), the majority of identified O-acetylated sialic acids (O-AcSia) until now had no glycosite/glycoprotein information. Herein, we introduced a new workflow for precise interpretation of O-AcSGPs with probability estimation by recognizing the characteristic B and Y ions of O-AcSias. With further optimization of mass spectrometry parameters, the method allowed us to identify a total of 171 unique O-AcSGPs in mouse serum. Although the majority of these O-AcSGPs were at a relatively low abundance compared with their non-O-acetylated states, they were mainly involved in peptidase/endopeptidase inhibitor activities. The method paves the way for large-scale structural and functional analyses of site-specific O-AcSias in various complex samples as well as further identification of many other similar chemical modifications on glycoproteins.

7.
Front Med ; 17(2): 304-316, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36580234

ABSTRACT

The structure of N-glycans on specific proteins can regulate innate and adaptive immunity via sensing environmental signals. Meanwhile, the structural diversity of N-glycans poses analytical challenges that limit the exploration of specific glycosylation functions. In this work, we used THP-1-derived macrophages as examples to show the vast potential of a N-glycan structural interpretation tool StrucGP in N-glycoproteomic analysis. The intact glycopeptides of macrophages were enriched and analyzed using mass spectrometry (MS)-based glycoproteomic approaches, followed by the large-scale mapping of site-specific glycan structures via StrucGP. Results revealed that bisected GlcNAc, core fucosylated, and sialylated glycans (e.g., HexNAc4Hex5Fuc1Neu5Ac1, N4H5F1S1) were increased in M1 and M2 macrophages, especially in the latter. The findings indicated that these structures may be closely related to macrophage polarization. In addition, a high level of glycosylated PD-L1 was observed in M1 macrophages, and the LacNAc moiety was detected at Asn-192 and Asn-200 of PD-L1, and Asn-200 contained Lewis epitopes. The precision structural interpretation of site-specific glycans and subsequent intervention of target glycoproteins and related glycosyltransferases are of great value for the development of new diagnostic and therapeutic approaches for different diseases.


Subject(s)
B7-H1 Antigen , Polysaccharides , Humans , Glycosylation , Polysaccharides/chemistry , Polysaccharides/metabolism
8.
Anal Chem ; 94(50): 17349-17353, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36484784

ABSTRACT

Accurate identification of core fucosylation on N-glycopeptides remains challenging due to fucose migration during mass spectrometry analysis. Here, we introduce a simple and straightforward method for core-fucosylated glycopeptide recognition based on the relative intensities of Y1+Fuc ions compared with their corresponding Y1 ions (labeled as Y1+Fuc/Y1 or simply Y1F/Y1 ratio > 0.1) in low-energy HCD-based spectra. The method was first developed by systematically evaluating the influence of fucose migration on the Y1F ion from antenna fucoses based on the distribution of the Y1F/Y1 ratios in the MS/MS spectra of antenna-fucosylated glycopeptides from Fut8-/- mouse brain. The feasibility of the method was then confirmed by using two standard glycoproteins, comparison with glycopeptides in Fut8+/+ mouse brain with/without in silico core-fucosylation removal, and Y1F/Y1 ratio alterations under a lower HCD energy. This method will be applicable to the manual interpretation and software-based high-throughput analysis of core-fucosylated glycopeptides.


Subject(s)
Glycopeptides , Tandem Mass Spectrometry , Animals , Mice , Glycopeptides/analysis , Tandem Mass Spectrometry/methods , Fucose/chemistry , Glycosylation , Glycoproteins/chemistry
9.
Glycoconj J ; 39(6): 737-745, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36322335

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is the second major subtype of primary liver cancer and has caused more and more attention with increasing incidence and mortality worldwide. Our previous study found that bisecting N-glycans are commonly increased in ICC, while the effects and potential functions of bisecting GlcNAc in ICC are still largely unclear. In this study, we further confirmed that the structures of bisecting GlcNAc were significantly up-regulated in ICC compared with paracancer tissues by glycoproteomic data and lectin histochemistry. The expression of its glycosyltransferase MGAT3 was also up-regulated in ICC tissues at both mRNA and protein levels, and expression of MGAT3 is negatively correlated with overall survival explored by bioinformatic analyses and published datasets from 255 patients. Next, the silencing of MGAT3 could inhibit the growth and invasion of ICC cells, and overexpressing of MGAT3 only promoted ICC cell invasion. Further glycoproteomic analysis showed that the commonly glycoproteins modified by bisecting GlcNAc after MGAT3-overexpression in two ICC cell lines were mainly involved in cell movement-related biological processes, such as cell adhesion, integrin-related and ECM-receptor interaction. This study sheds light on the potential effects of bisecting GlcNAc in ICC cells and suggests that MGAT3 might be used as a potential target in the therapy of ICC.


Subject(s)
Acetylglucosamine , N-Acetylglucosaminyltransferases , Humans , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Acetylglucosamine/metabolism , Polysaccharides/chemistry , Glycoproteins/genetics , Glycoproteins/chemistry , Cell Line , Cell Line, Tumor
10.
Anal Bioanal Chem ; 414(29-30): 8245-8253, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181511

ABSTRACT

Selecting proper and efficient glycopeptide enrichment approaches are essential for mass spectrometry-based glycoproteomics since glycopeptides are usually with microheterogeneity and low abundance in most biological samples. Herein, we introduced a cotton hydrophilic interaction liquid chromatography (HILIC) approach for large-scale glycopeptide enrichment with 80% acetonitrile/1% trifluoroacetic acid as the optimal sample loading buffer. The comparison of cotton HILIC with Venusil HILIC and mixed anion-exchange (MAX) approaches indicated that cotton HILIC was superior in overall glycopeptide enrichment, whereas Venusil HILIC preferred in complex glycan structures and MAX performed better with high mannose glycans. Exploration of capacity and recovery rate of cotton HILIC illustrated that 5mg cotton packed in a 200µL tip achieved a reasonable glycopeptide enrichment performance (~6% recovery) from ~0.5mg peptides. In conclusion, cotton HILIC can be used as an optional glycopeptide enrichment approach in glycosylation analysis with its specific merit.


Subject(s)
Glycopeptides , Polysaccharides , Glycopeptides/chemistry , Chromatography, Liquid/methods , Glycosylation , Hydrophobic and Hydrophilic Interactions
11.
Anal Chem ; 94(36): 12274-12279, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36036581

ABSTRACT

The spike (S) protein plays a key role in COVID-19 (SARS-CoV-2) infection and host-cell entry. Previous studies have systematically analyzed site-specific glycan compositions as well as many important structural motifs of the S protein. Here, we further provide structural-clear N-glycosylation of the S protein at a site-specific level by using our recently developed structural- and site-specific N-glycoproteomics sequencing algorithm, StrucGP. In addition to the common N-glycans as detected in previous studies, many uncommon glycosylation structures such as LacdiNAc structures, Lewis structures, Mannose 6-phosphate (M6P) residues, and bisected core structures were unambiguously mapped at a total of 20 glycosites in the S protein trimer and protomer. These data further support the glycosylation structural-functional investigations of the COVID-19 virus spike.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Polysaccharides/chemistry
12.
Anal Methods ; 14(30): 2913-2919, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35877071

ABSTRACT

Sialic acid, a common terminal monosaccharide on many glycoconjugates, plays essential roles in many biological processes such as immune responses, pathogen recognition, and cancer development. For various purposes, sialic acids may need to be removed from glycopeptides or glycans, mainly using enzymatical or chemical approaches. In this study, we found that most commonly used chemical methods couldn't completely remove sialic acids from glycopeptides. Although the de-sialylation efficiency could be further enhanced by increasing the treatment time or acid concentration, the undesirable side reactions on the peptide portion would decrease glycopeptide identification. By adding the deamidation on carbamidomethyl-cysteine (C), asparagine (N), and glutamine (Q) residues as a variable modification during database search, most of the unidentified spectra could be recovered. This optional acid-treatment and database search method for the complete removal of sialic acids without losing much spectral identification should be quite useful for many glycomic and glycoproteomic studies.


Subject(s)
Glycopeptides , N-Acetylneuraminic Acid , Glycopeptides/chemistry , Polysaccharides , Sialic Acids/chemistry
13.
J Zhejiang Univ Sci B ; 23(5): 407-422, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35557041

ABSTRACT

Macrophages are widely distributed immune cells that contribute to tissue homeostasis. Human THP-1 cells have been widely used in various macrophage-associated studies, especially those involving pro-inflammatory M1 and anti-inflammatory M2 phenotypes. However, the molecular characterization of four M2 subtypes (M2a, M2b, M2c, and M2d) derived from THP-1 has not been fully investigated. In this study, we systematically analyzed the protein expression profiles of human THP-1-derived macrophages (M0, M1, M2a, M2b, M2c, and M2d) using quantitative proteomics approaches. The commonly and specially regulated proteins of the four M2 subtypes and their potential biological functions were further investigated. The results showed that M2a and M2b, and M2c and M2d have very similar protein expression profiles. These data could serve as an important resource for studies of macrophages using THP-1 cells, and provide a reference to distinguish different M2 subtypes in macrophage-associated diseases for subsequent clinical research.


Subject(s)
Macrophages , Proteomics , Humans , Macrophages/metabolism , Phenotype , THP-1 Cells
14.
J Proteome Res ; 21(7): 1664-1674, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35616904

ABSTRACT

N-Linked glycoproteins are rich in seminal plasma, playing various essential roles in supporting sperm function and the fertilization process. However, the detailed information on these glycoproteins, particularly site-specific glycan structures, is still limited. In this study, a precision site-specific N-glycoproteome map of human seminal plasma was established by employing the site-specific glycoproteomic approach and a recently developed glycan structure interpretation software, StrucGP. A total of 9567 unique glycopeptides identified in human seminal plasma were composed of 773 N-linked glycan structures and 1019 N-glycosites from 620 glycoproteins. These glycans were comprised of four types of core structures and 13 branch structures. The majority of identified glycoproteins functioned in response to stimulus and immunity. As we reported in human spermatozoa, heavy fucosylation (fucose residues ≥6 per glycan) was also detected on seminal plasma glycoproteins such as clusterin and galectin-3-binding protein, which were involved in the immune response of biological processes and reactome pathways. Comparison of site-specific glycans between seminal plasma and spermatozoa revealed more complicated glycan structures in seminal plasma than in spermatozoa, even on their shared glycoproteins. These present data will be greatly beneficial for the in-depth structural and functional study of glycosylation in the male reproduction system.


Subject(s)
Polysaccharides , Semen , Glycopeptides/chemistry , Glycoproteins/metabolism , Glycosylation , Humans , Male , Polysaccharides/chemistry , Semen/metabolism
15.
Anal Bioanal Chem ; 414(11): 3311-3317, 2022 May.
Article in English | MEDLINE | ID: mdl-35229171

ABSTRACT

In glycomic and glycoproteomic studies, solutions containing diluted organic acids such as formic acid (FA) have been widely used for dissolving intact glycopeptide and glycan samples prior to mass spectrometry analysis. Here, we show that an undesirable + 28 Da modification occurred in a time-dependent manner when the glycan and glycopeptide samples were stored in FA solution at - 20 °C. We confirmed that this unexpected modification was caused by formylation between the hydroxyl groups of glycans and FA with a relatively low reaction rate. As this incomplete modification affected the glycan and glycopeptide identification and quantification in glycomic and glycoproteomic studies, the storage at - 20 °C should be avoided once the glycan and glycopeptide samples have been dissolved in FA solution.


Subject(s)
Glycomics , Glycopeptides , Formates , Glycomics/methods , Glycopeptides/chemistry , Mass Spectrometry , Polysaccharides/chemistry
16.
Mol Cell Proteomics ; 21(4): 100214, 2022 04.
Article in English | MEDLINE | ID: mdl-35183770

ABSTRACT

Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm-egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility.


Subject(s)
Acrosome Reaction , Spermatozoa , Acrosome/metabolism , Glycoproteins/metabolism , Glycosylation , Humans , Male , Proteomics , Sperm Capacitation , Spermatozoa/metabolism
17.
Mol Oncol ; 16(11): 2135-2152, 2022 06.
Article in English | MEDLINE | ID: mdl-34855283

ABSTRACT

Primary liver cancer, mainly comprising hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), remains a major global health problem. Although ICC is clinically different from HCC, their molecular differences are still largely unclear. In this study, precision N-glycoproteomic analysis was performed on both ICC and HCC tumors as well as paracancer tissues to investigate their aberrant site-specific N-glycosylation. By using our newly developed glycoproteomic methods and novel algorithm, termed 'StrucGP', a total of 486 N-glycan structures attached on 1235 glycosites were identified from 894 glycoproteins in ICC and HCC tumors. Notably, glycans with uncommon LacdiNAc (GalNAcß1-4GlcNAc) structures were distinguished from their isomeric glycans. In addition to several bi-antennary and/or bisecting glycans that were commonly elevated in ICC and HCC, a number of LacdiNAc-containing, tri-antennary, and core-fucosylated glycans were uniquely increased in ICC. More interestingly, almost all LacdiNAc-containing N-glycopeptides were enhanced in ICC tumor but not in HCC tumor, and this phenomenon was further confirmed by lectin histochemistry and the high expression of ß1-4 GalNAc transferases in ICC at both mRNA and protein expression levels. The novel N-glycan alterations uniquely detected in ICC provide a valuable resource for future studies regarding to the discovery of ICC diagnostic biomarkers, therapeutic targets, and mechanism investigations.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Bile Ducts, Intrahepatic/chemistry , Bile Ducts, Intrahepatic/metabolism , Carcinoma, Hepatocellular/genetics , Humans , Lactose/analogs & derivatives , Liver Neoplasms/genetics , Polysaccharides/analysis
18.
Biophys Rep ; 8(5-6): 282-300, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-37287875

ABSTRACT

Protein glycosylation is of great importance in many biological processes. Glycosylation has been increasingly analyzed at the intact glycopeptide level using mass spectrometry to study site-specific glycosylation changes under different physiological and pathological conditions. StrucGP is a glycan database-independent search engine for the structural interpretation of N-glycoproteins at the site-specific level. To ensure the accuracy of results, two collision energies are implemented in instrument settings for each precursor to separate fragments of peptides and glycans. In addition, the false discovery rates (FDR) of peptides and glycans as well as probabilities of detailed structures are estimated. In this protocol, the use of StrucGP is demonstrated, including environment configuration, data preprocessing as well as result inspection and visualization using our in-house software "GlycoVisualTool". The described workflow should be able to be performed by anyone with basic proteomic knowledge.

19.
Nat Methods ; 18(8): 921-929, 2021 08.
Article in English | MEDLINE | ID: mdl-34341581

ABSTRACT

Precision mapping of glycans at structural and site-specific level is still one of the most challenging tasks in the glycobiology field. Here, we describe a modularization strategy for de novo interpretation of N-glycan structures on intact glycopeptides using tandem mass spectrometry. An algorithm named StrucGP is also developed to automate the interpretation process for large-scale analysis. By dividing an N-glycan into three modules and identifying each module using distinct patterns of Y ions or a combination of distinguishable B/Y ions, the method enables determination of detailed glycan structures on thousands of glycosites in mouse brain, which comprise four types of core structure and 17 branch structures with three glycan subtypes. Owing to the database-independent glycan mapping strategy, StrucGP also facilitates the identification of rare/new glycan structures. The approach will be greatly beneficial for in-depth structural and functional study of glycoproteins in the biomedical research.


Subject(s)
Algorithms , Glycopeptides/analysis , Glycoproteins/analysis , Polysaccharides/analysis , Animals , Glycopeptides/chemistry , Glycoproteins/chemistry , Glycosylation , Male , Mice , Mice, Inbred C57BL , Polysaccharides/chemistry
20.
Front Immunol ; 12: 700009, 2021.
Article in English | MEDLINE | ID: mdl-34267761

ABSTRACT

Macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2) in the immune system, performing pro-inflammatory and anti-inflammatory functions, respectively. Human THP-1 and mouse RAW264.7 cell line models have been widely used in various macrophage-associated studies, while the similarities and differences in protein expression profiles between the two macrophage models are still largely unclear. In this study, the protein expression profiles of M1 and M2 phenotypes from both THP-1 and RAW264.7 macrophages were systematically investigated using mass spectrometry-based proteomics. By quantitatively analyzing more than 5,000 proteins among different types of macrophages (M0, M1 and M2) from both cell lines, we identified a list of proteins that were uniquely up-regulated in each macrophage type and further confirmed 43 proteins that were commonly up-regulated in M1 macrophages of both cell lines. These results revealed considerable divergences of each polarization type between THP-1 and RAW264.7 macrophages. Moreover, the mRNA and protein expression of CMPK2, RSAD2, DDX58, and DHX58 were strongly up-regulated in M1 macrophages for both macrophage models. These data can serve as important resources for further studies of macrophage-associated diseases in experimental pathology using human and mouse cell line models.


Subject(s)
Macrophages/immunology , Macrophages/metabolism , Animals , Humans , Macrophage Activation/physiology , Mice , Proteomics , RAW 264.7 Cells , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...