Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 268(Pt 2): 131977, 2024 May.
Article in English | MEDLINE | ID: mdl-38692540

ABSTRACT

The emulsions prepared with most currently reported emulsifiers are stable only at room temperature and are susceptible to demulsification at higher temperatures. This thermal instability prevents their use in high-temperature and high-salt environments encountered oilfield extraction. To address this issue, in this study, two temperature-responsive emulsifiers, PSBMA and CS-PSBMA, were synthesized. Both emulsifiers exhibited the ability to form stable emulsions within the temperature range of 60-80 °C and undergo demulsification at 20-40 °C. A comprehensive investigation was conducted to assess the impact of emulsifier concentration, water-to-oil ratio, and salt ion concentration on the stability of emulsions formed by these two emulsifiers. The results demonstrated their remarkable emulsification capabilities across diverse oil phases. Notably, the novel emulsifier CS-PSBMA, synthesized through the grafting chitosan (CS) onto PSBMA, not only exhibits superior emulsion stability and UCST temperature responsiveness but also significantly enhanced the salt resistance of the emulsion. Remarkably, the emulsion maintained its stability even in the presence of monovalent salt ions at concentrations up to 2 mol/L (equivalent to a mineralization level of 1.33 × 105 mg/L in water) and divalent salt ions at concentrations up to 3 mol/L (equivalent to a mineralization level of 2.7 × 105 mg/L in water). The emulsions stabilized by both emulsifiers are resilient to harsh reservoir conditions and effectively emulsify heavy oils, enabling high-temperature emulsification and low-temperature demulsification. These attributes indicate their promising potential for industrial applications, particularly in the field of enhanced oil recovery.


Subject(s)
Emulsifying Agents , Emulsions , Temperature , Emulsifying Agents/chemistry , Emulsions/chemistry , Oils/chemistry , Water/chemistry , Salts/chemistry , Methacrylates/chemistry , Chitosan/chemistry
2.
ACS Appl Mater Interfaces ; 15(51): 59482-59493, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38090752

ABSTRACT

Metal-nitrogen-carbon (M-N-C) catalysts obtained from zeolitic imidazolate frameworks (ZIFs) have great potential in the oxygen reduction reaction (ORR). Herein, based on the same three-dimensional (3D) topological structure of ZIF-67 and ZIF-8, ZIF-67 is grown on the ZIF-8 surface by the epitaxial growth method, and ZIF-8 is used as a sacrificial template to obtain a Co-embedded layered porous carbon nanocage (CoPCN) electrocatalyst. Meanwhile, the self-sacrificing template effectively improves the specific surface area of the porous structure and reduces the depletion of active sites. The CoPCN shows a high half-wave potential of 0.885 V and superior stability as well as excellent methanol resistance. Theoretical calculations demonstrate that the Co-N1-C2 sites of CoPCN effectively reduce the energy barrier of ORR. In addition, a zinc-air battery (ZAB) based on the CoPCN exhibits excellent peak power density (90 mW cm-2) and superior cycle performance. This work presents a novel idea in the design of ZIF precursor systems to synthesize efficient ORR catalysts.

3.
Phys Chem Chem Phys ; 26(1): 304-313, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38062783

ABSTRACT

To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.

4.
Phys Chem Chem Phys ; 25(37): 25780-25788, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37724345

ABSTRACT

In recent years, Pickering emulsifiers have been widely used in various production fields due to their excellent structural stability, biocompatibility and environmental friendliness. For some applications, it is required that the emulsifier can quickly respond to environmental stimuli and control the transition between stable and unstable emulsions. In this paper, we report a novel composite Pickering emulsifier with Fe3O4 as the core and magnetic response recognition body, silica as the intermediate protective layer, and chitosan (CS) of different molecular weights to endow solid particles with surface activity and pH-responsive properties. This emulsifier can stabilize the emulsion in the emulsion system with deionized water as the aqueous phase and liquid paraffin as the oil phase and can control the demulsification of the formed emulsion under the dual pH/magnetic stimulation. The experimental results show that Fe3O4@SiO2@CS has good paramagnetism and pH responsiveness. The particle size of the composite emulsifier nanoparticles is between 90 nm and 120 nm, and the best stabilizing effect of the emulsion is achieved when the dosage is 0.5 wt%. In the pH range of 3-11, the emulsifier can rapidly demulsify a stable paraffin oil-water emulsion system under the action of a magnetic field of strength 0.4 T. The pH response of the emulsifier is as follows: when pH ≤ 2, the system can form a stable emulsion, which is composed of fully protonated chitosan as a free chain segment and Fe3O4@SiO2. Emulsion stabilization was achieved with monolithic Fe3O4@SiO2@CS as an emulsifier at pH > 2, and demulsification was achieved at pH ≈ pKb (CS) at 298 K. The research in this paper can provide a feasible idea and synthesis method for the preparation of organic-inorganic composite structure emulsifier.

5.
J Colloid Interface Sci ; 633: 575-588, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36470138

ABSTRACT

In view of the critical importance of oxygen to corrosion evolution, to starve corrosion via depleting oxygen in coatings is a promising strategy. In this work, a novel nanocatalytic anticorrosion concept is proposed to design new coating with outstanding corrosion resistance. Different from the passive barrier of traditional coatings and self-repair after corrosion of current stimuli-feedback coatings, such coating could spontaneously eliminate internal diffused oxygen and greatly suppress the corrosion process. As a proof of concept, single-atom Fe-N-C electrocatalyst with isolated FeN4 active sites is synthesized by a simple confined carbonization method, exhibiting excellent oxygen reduction performance (E1/2 = 0.902 V). In composite coating, the evenly dispersed Fe-N-C compensates for the coating defects and serves as oxygen scavengers, which could actively adsorb and consume ambient oxygen, thereby preventing oxygen penetration to the metal substrate surface, eliminating the oxygen contribution to corrosion and significantly boosting the anticorrosion performance of epoxy coating. This in-situ mediation for oxygen in coating prevents metal substrate from receiving new supply of oxygen, while imparting active anticorrosion property to the coating.

6.
Phys Chem Chem Phys ; 24(47): 28886-28894, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36437686

ABSTRACT

Polymersomes with inhomogeneous membranes in composition and structure have generated widespread interest for the preparation of functionalized nanocarriers. We propose a simple but versatile strategy to manipulate inhomogeneous subdomains on polymersome membranes by the co-assembly of block copolymer blends with varied molecular architectures and chemistries. Both binary and ternary copolymer blends are considered to construct polymersomes, and the subdomains of the membranes are formed by controlling the difference in the flexibility and rigidity of different blocks. This difference contributes to the formation of disk-like domains (by rigid blocks) and soft domains (by flexible blocks) on the membrane. An interesting effect of this structure is that in response to external stimuli, the soft membrane domain becomes worm-like or porous to "open" the polymersome for matter exchange, while the rigid domain stays undecomposed and acts like an anchor binding all flexible copolymers. Once the external stimuli disappear, all flexible copolymers can be pulled back to restore the original polymersome morphology (i.e., "close" the polymersome). The specific morphological reversibility of hybrid polymersomes holds great potential for practical applications where changeable membrane permeability or shape under environmental stimuli is highly needed.

7.
J Colloid Interface Sci ; 607(Pt 2): 1142-1152, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34571301

ABSTRACT

HYPOTHESIS: Delivery of multiple payloads using the same micelle is of significance to achieve multifunctional or synergistic effects. The interacting distribution of different payloads in micelles is expected to influence the loading stability and capacity. It is highly desirable to explore how intermolecular interactions affect the joint distribution of multi-payloads. EXPERIMENTS: Dissipative Particle Dynamics simulations were performed to probe the loading of three payloads: decane with a linear carbon chain, butylbenzene with an aromatic ring connected to carbon chain, and naphthalene with double aromatic rings, within poly(ß-amino ester)-b-poly(ethylene glycol) micelles. Properties of core-shell micelles, e.g., morphological evolution, radial density distribution, mean square displacement, and contact statistics, were analyzed to reveal payloads loading stability and capacity. Explorations were extended to vesicular, multi-compartment, double helix, and layer-by-layer micelles with more complex inner structures. FINDINGS: Different payloads have their own preferred locations. Decane locates at the hydrophilic/hydrophobic interface, butylbenzene occupies both the hydrophilic/hydrophobic interface and the hydrophobic core, while naphthalene enters the hydrophobic core. More efficient delivery of multi-payloads is achieved since the competition of payloads occupying preferred locations is minimized. The fusion of micelles encapsulating different payloads suggests that specific payloads will move to their preferred positions without interfering other payloads.


Subject(s)
Micelles , Polymers , Drug Carriers , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols
8.
Membranes (Basel) ; 10(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272800

ABSTRACT

Ultrafiltration (UF) membranes have found great application in sewage purification and desalination due to their high permeation flux and high rejection rate for contaminants under low-pressure conditions, but the flux and antifouling ability of UF membranes needs to be improved. Tetrakis (4-carboxyphenyl) porphyrin (TCPP) has good hydrophilicity, and it is protonated under strongly acidic conditions and then forms strong hydrogen bonds with N, O and S, so that the TCPP would be well anchored in the membrane. In this work, NaHCO3 was used to dissolve TCPP and TMC (trimesoyl chloride) was used to produce a strong acid. Then, TCPP was modified in a membrane with a different rejection rate by a method similar to interfacial polymerization. Performance tests of TCPP/polysulfone (PSf) membranes show that for the membrane with a high BSA (bovine serum albumin) rejection, when the ratio of NaHCO3 to TCPP is 16:1 (wt.%), the pure water flux of membrane Z1 16:1 is increased by 34% (from 455 to 614 Lm-2h-1bar-1) while the membrane retention was maintained above 95%. As for the membrane with a low BSA rejection, when the ratio of NaHCO3 to TCPP was 32:1, the rejection of membrane B2 32:1 was found to increase from 81% to 96%. Although the flux of membrane B2 32:1 decreased, it remained at 638 Lm-2h-1bar-1, which is comparable to the reported polymer ultrafiltration membrane. The above dual results are thought to be attributed to the synergistic effect of protonated TCPP and NaHCO3, where the former increases membrane flux and the latter increases the membrane rejection rate. This work provides a way for the application of porphyrin and porphyrin framework materials in membrane separation.

9.
Macromol Rapid Commun ; 41(3): e1900561, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31859398

ABSTRACT

Self-assembly of asymmetric block copolymers (BCPs) around active pore edges has emerged as an important strategy to produce smart membranes with tunable pathways for solute transport. However, thus far, it is still challenging to manipulate pore shape and functionality for directional transformation under external stimuli. Here, a versatile strategy by mesoscale simulations to design stimuli-responsive pores with various edge decorations in hybrid membranes is reported. Dopant BCPs are used as decorators to stabilize pore edges and extend their function in reconfiguring pores in response to repeated membrane stretching/shrinking caused by external stimuli. The decoration morphologies are predictable since the assemblies of dopant BCPs around pore edges are closely related to their self-assemblies in solution. The coassembly between different BCPs in the hybrid membrane for the control of pore morphology is featured, and the parameter settings, including block incompatibility and molecular architecture for the construction of a specific pore, are determined. Results show that harnessed dopant BCPs in the hybrid membrane can enhance pore formation and induce directional pore shape and functionality transformation. Diversified pore decorations exhibit potential that can be further explored in selective solute transport and the design of stimuli-responsive smart nanodevices.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Facilitated Diffusion , Porosity , Stimuli Responsive Polymers/analysis , Stimuli Responsive Polymers/chemistry , Surface Properties , Surface Tension
10.
Polymers (Basel) ; 11(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426350

ABSTRACT

One-atom-thick materials hold promise for the future of membrane-based gas purification and water filtration applications. However, there are a few investigations on the mechanical properties of these materials under pressure-driven condition. Here, by employing molecular simulation techniques and continuum mechanics simulation, we investigate the mechanical strength of two-dimensional hydrocarbon polymers containing sub-nanometer pores with various topologies. We demonstrate that the mechanical strengths of the membranes are correlated with their pore sizes and geometries. In addition, when the pore size of substrates is controlled within a reasonable range, all of the membrane candidates can withstand the practical hydraulic pressure of few megapascal. The studied materials also exhibit better seawater desalination performance as compared to the traditional polymeric reverse osmosis membrane. This work presents a new route to design new separation membrane, and also propose a simulation method to evaluate the mechanical strength and desalination performance.

11.
Polymers (Basel) ; 11(1)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30960105

ABSTRACT

The pullout process of graphene from an epoxy/graphene composite filled with a carbon nanotube (CNT) was simulated by molecular dynamics simulations. The interaction energy and the interfacial adhesion energy were calculated to analyze the effect of CNT addition on the interfacial adhesion between the graphene and the epoxy matrix, with varying CNT radii, distances between the CNT and the graphene sheet, CNT axial directions, and the number of CNT walls. Generally, the addition of a CNT strengthens the interfacial adhesion between the graphene and the polymer matrix. Firstly, a larger CNT radius induces a stronger interfacial adhesion of graphene with the matrix. Secondly, when the CNT is farther away from the graphene sheet, the interfacial adhesion of graphene with the matrix becomes weaker. Thirdly, the CNT axial direction has little effect on the interfacial adhesion of graphene in the equilibrium structure. However, it plays an important role in the graphene pullout process. Finally, compared with a single-walled CNT, the interfacial adhesion between graphene and the matrix is stronger when a double-walled CNT is added to the matrix.

12.
ACS Appl Mater Interfaces ; 10(22): 18778-18786, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29733183

ABSTRACT

Membrane-based water desalination has drawn considerable attention for its potential in addressing the increasingly limited water resources, but progress remains limited due to the inherent constraints of conventional membrane materials. In this work, by employing state-of-the-art molecular simulation techniques, we demonstrated that two-dimensional hydrocarbon polymer membranes, materials that possess intrinsic and tunable nanopores, can provide opportunities as molecular sieves for producing drinkable water from saline sources. Moreover, we identified a unique relationship between the permeation and selectivity for membranes with elliptical pores, which breaks the commonly known trade-off between the pore size and desalination performance. Specifically, increase in the area of elliptical pores with a controlled minor diameter can offer an improved water flux without compromising the ability to reject salts. Water distributions and water dynamics at atomic levels with the potential of mean force profiles for water and ions were also analyzed to understand the dependence of permeation and selectivity on the pore geometry. The outcomes of this work are instrumental to the future development of ultrathin-film reverse osmosis membranes and provide guidelines for the design of membranes with more effective and efficient pore structures.

13.
Phys Chem Chem Phys ; 20(14): 9460-9470, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29565439

ABSTRACT

Dissipative particle dynamics (DPD) simulation is used to study the effect of pH on the morphological transition in micelles assembled from dirhamnolipids (diRLs), and analyze the pH-driven mechanism and influence factors of micellar surface patterns. At pH < 4.0, various multilayer structures with homogeneous surface patterns are observed, whereas diRLs can self-assemble into novel anisotropic morphologies with phase-separated surface patterns at pH > 7.4, such as patchy spherical micelles, rod-like micelles with helical surface patterns and a lamellar phase with anisotropic surface patterns. The change in a surface pattern results from the diverse molecular arrangement in the course of assembly due to the deprotonation of carboxyl groups. Further studies show that influence factors, such as molecular structure, solvent selectivity and intramolecular interaction, are closely associated with the changes in surface patterns and topological structures. In detail, decreasing the critical packing parameter of rhamnolipids, increasing the solution polarity and weakening the compatibility between rhamnose rings and alkyl chains are all beneficial to the formation of phase-separated surface patterns. Remarkably, a wider variety of surface patterns (randomly anisotropic surface patterns) can be further obtained with the different factors mentioned above. This work is expected to extend the applications of diRLs to advanced functional materials like drug delivery, optoelectronics and nanofiltration membranes.

14.
ACS Nano ; 12(2): 1413-1419, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29385331

ABSTRACT

Multigeometry nanoparticles with high complexity in composition and structure have attracted significant attention for enhanced functionality. We assess a simple but versatile strategy to construct hybrid nanoparticles with subdivided geometries through the cooperative assembly of diblock copolymer blends with asymmetric architectures. We report the formation of multicompartmental, vesicular, cylindrical, and spherical structures from pure AB systems. Then, we explore the assemblies of binary AB/AC blends, where the two incompatible, hydrophobic diblock copolymers subdivide into self-assembled local geometries, and the complexity of the obtained morphologies increases. We expand the strategy to ternary AB/AC/AD systems by tuning the effect of phase separation of different hydrophobic domains on the surface or internal region of the nanoparticle. The kinetic control of the coassembly in the initial stage is crucial for controlling the final morphology. The interactions of copolymers with different block lengths and chemistries enable the stabilization of interfaces, rims and ends of subdomains in the hybrid multigeometry nanoparticles. With further exploration of size and shape, the dependence of local geometry on the volume fraction is discussed. We show an efficient approach for controllable multigeometry nanoparticle construction that will be useful for multifunctional and hierarchical nanomaterials.

15.
Soft Matter ; 13(35): 5877-5887, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28766653

ABSTRACT

Multicompartment nanostructures, such as microcapsules with clearly separated shell and core, are not easily accessible by conventional block copolymer self-assembly. We assess a versatile computational strategy through cooperative assembly of diblock copolymer blends to generate spherical and cylindrical compartmentalized micelles with intricate structures and morphologies. The co-assembly strategy combines the advantages of polymer blending and incompatibility-induced phase separation. Following this strategy, various nanoassemblies of pure AB, binary AB/AC and ternary AB/AC/AD systems such as compartmentalized micelles with sponge-like, Janus, capsule-like and onion-like morphologies can be obtained. The formation and structural adjustment of microcapsule micelles, in which the shell or core can be occupied by either pure or mixed diblock copolymers, were explored. The mechanism involving the separation of shell and core copolymers is attributed to the stretching force differences of copolymers which drive the arrangement of different copolymers in a pathway to minimize the total interfacial energy. Moreover, by adjusting block interactions, an efficient approach is exhibited for regulating the shell or core composition and morphology in microcapsule micelles, such as the transition from the "pure shell/mixed core" morphology to the "mixed shell/pure core" morphology in the AB/AC/AD micelle. This mesoscale simulation study identifies the key factors governing co-assembly of diblock copolymer blends and provides bottom-up insights towards the design and optimization of new multicompartment micelles.

16.
J Colloid Interface Sci ; 506: 493-503, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28756316

ABSTRACT

Dissipative particle dynamics (DPD) simulation has been used to study the effect of pH on the morphology transition of micelles assembled by monorhamnolipids (monoRLs). Results show that micellar structures and transition modes with increasing mass concentrations are multiform due to the changeable hydrophilicity of pH-responsive beads at different pH levels. Various chaotic multilayer aggregations of monoRLs are observed at low pH (pH<4.0) whereas well-ordered single-layer structures are obtained at high pH (pH>7.4). At medium pH region (4.0

17.
Langmuir ; 33(29): 7288-7297, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28661159

ABSTRACT

Using dissipative particle dynamics simulation, we probe the tunable permeability of cross-linked microcapsules made from pH-sensitive diblock copolymers poly(ethylene oxide)-b-poly(N,N-diethylamino-2-ethyl methacrylate) (PEO-b-PDEAEMA). We first examine the self-assembly of non-cross-linked microcapsules and their pH-responsive collapse and then explore the effects of cross-linking and block interaction on the swelling or deswelling of cross-linked microcapsules. Our results reveal a preferential loading of hydrophobic dicyclopentadiene (DCPD) molecules in PEO-b-PDEAEMA copolymers. Upon reduction of pH, non-cross-linked microcapsules fully decompose into small wormlike clusters as a result of large self-repulsions of protonated copolymers. With increasing degree of cross-linking, the morphology of the microcapsule becomes more stable to pH change. The highly cross-linked microcapsule shell undergoes significant local polymer rearrangement in acidic solution, which eliminates the amphiphilicility and therefore enlarges the permeability of the shell. The responsive cross-linked shell experiences a disperse-to-buckle configurational transition upon reduction of pH, which is effective for the steady or pulsatile regulation of shell permeability. The swelling rate of the cross-linked shell is dependent on both electrostatic and nonelectrostatic interactions between the pH-sensitive groups as well as the other groups. Our study highlights the combination of cross-linking structure and block interactions in stabilizing microcapsules and tuning their selective permeability.

18.
ACS Appl Mater Interfaces ; 8(11): 7499-508, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26927032

ABSTRACT

Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%.

SELECTION OF CITATIONS
SEARCH DETAIL
...