Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochem Anal ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072901

ABSTRACT

INTRODUCTION: Stemona tuberosa Lour. (ST) is a significant traditional Chinese medicine (TCM) renowned for its antitussive and insecticidal properties. ST is commonly subjected to processing in clinical practice before being utilized as a medicinal substance. Currently, the customary technique for processing ST is honey-fried. Nevertheless, the specific variations in chemical constituents of ST before and after honey-fried remain unclear. OBJECTIVE: This work aimed to analyze the variations in chemical constituents of ST before and after honey-fried and to study the distribution of differential markers in the roots. METHODS: UPLC-Orbitrap Fusion MS combined with molecular network analysis was used to analyze the metabolome of ST and honey-fried ST (HST) and to screen the differential metabolites by multivariate statistical analysis. Spatial metabolomics was applied to study the distribution of differential metabolites by desorption electrospray ionization mass spectrometry imaging (DESI-MSI). RESULTS: The ST and HST exhibited notable disparities, with 56 and 61 chemical constituents found from each, respectively. After processing, the types of alkaloids decreased, and 12 differential metabolites were screened from the common compounds. The notable component variations were epibisdehydro-tuberostemonine J, neostenine, tuberostemonine, croomine, neotuberostemonine, and so forth. MSI visualized the spatial distribution of differential metabolites. CONCLUSIONS: Our research provided a rapid and effective visualization method for the identification and spatial distribution of metabolites in ST. Compared with the traditional method, this method offered more convincing data supporting the processing mechanism investigations of Stemona tuberosa from a macroscopic perspective.

2.
Molecules ; 29(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542867

ABSTRACT

Jieyu Pills (JYPs), a Chinese medicine consisting of 10 herbal elements, have displayed promising clinical effectiveness and low by-effects in the treatment of depression. Prior investigations mostly focused on elucidating the mechanism and therapeutic efficacy of JYPs. In our earlier study, we provided an analysis of the chemical composition, serum pharmacochemistry, and concentrations of the main bioactive chemicals found in JYPs. However, our precise understanding of the pharmacokinetics and metabolism remained vague. This study involved a comprehensive and meticulous examination of the pharmacokinetics of 13 bioactive compounds in JYPs. Using UPLC-Orbitrap Fusion MS, we analyzed the metabolic characteristics and established the pharmacokinetic parameters in both control rats and model rats with attention deficit hyperactivity disorder (ADHD) following oral administration of the drug. Before analysis, plasma samples that were collected at different time intervals after the administration underwent methanol pre-treatment with Puerarin used as the internal standard (IS) solution. Subsequently, the sample was chromatographed on a C18 column employing gradient elution. The mobile phase consisted of methanol solution containing 0.1% formic acid in water. The electrospray ionization source (ESI) was utilized for ionization, whereas the scanning mode employed was selected ion monitoring (SIM). The UPLC-Orbitrap Fusion MS method was subjected to a comprehensive validation process to assess its performance. The method demonstrated excellent linearity (r ≥ 0.9944), precise measurements (RSD < 8.78%), accurate results (RE: -7.88% to 8.98%), and appropriate extraction recoveries (87.83-102.23%). Additionally, the method exhibited minimal matrix effects (87.58-101.08%) and satisfactory stability (RSD: 1.52-12.42%). These results demonstrated adherence to the criteria for evaluating and determining biological material. The 13 bioactive compounds exhibited unique pharmacokinetic patterns in vivo. In control rats, all bioactive compounds except Ferulic acid exhibited linear pharmacokinetics within the dose ranges. In the ADHD model, the absorption rate and amount of most of the components were both observed to have increased. Essentially, this work is an important reference for examining the metabolism of JYPs and providing guidelines for clinical therapy.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Attention Deficit Disorder with Hyperactivity/drug therapy , Tandem Mass Spectrometry/methods , Methanol , Drugs, Chinese Herbal/analysis , Reproducibility of Results
3.
Molecules ; 29(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38398522

ABSTRACT

The objective of this study was to identify and evaluate the pharmacodynamic constituents of Ardisiae Japonicae Herba (AJH) for the treatment of acute lung injury (ALI). To fully analyze the chemical contents of various extraction solvents (petroleum ether site (PE), ethyl acetate site (EA), n-butanol site (NB), and water site (WS)) of AJH, the UPLC-Orbitrap Fusion-MS technique was employed. Subsequently, the anti-inflammatory properties of the four extracted components of AJH were assessed using the lipopolysaccharide (LPS)-induced MH-S cellular inflammation model. The parts that exhibited anti-inflammatory activity were identified. Additionally, a technique was developed to measure the levels of specific chemical constituents in the anti-inflammatory components of AJH. The correlation between the "anti-inflammatory activity" and the constituents was analyzed, enabling the identification of a group of pharmacodynamic components with anti-inflammatory properties. ALI model rats were created using the tracheal drip LPS technique. The pharmacodynamic indices were evaluated for the anti-inflammatory active portions of AJH. The research revealed that the PE, EA, NB, and WS extracts of AJH included 215, 289, 128, and 69 unique chemical components, respectively. Additionally, 528 chemical components were discovered after removing duplicate values from the data. The EA exhibited significant anti-inflammatory activity in the cellular assay. A further analysis was conducted to determine the correlation between anti-inflammatory activity and components. Seventeen components, such as caryophyllene oxide, bergenin, and gallic acid, were identified as potential pharmacodynamic components with anti-inflammatory activity. The pharmacodynamic findings demonstrated that the intermediate and high doses of the EA extract from AJH exhibited a more pronounced effect in enhancing lung function, blood counts, and lung histology in a way that depended on the dosage. To summarize, when considering the findings from the previous study on the chemical properties of AJH, it was determined that the EA contained a group of 13 constituents that primarily contributed to its pharmacodynamic effects against ALI. The constituents include bergenin, quercetin, epigallocatechingallate, and others.


Subject(s)
Acetates , Acute Lung Injury , Ardisia , Rats , Animals , Plant Extracts/chemistry , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Solvents/chemistry , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy
4.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764268

ABSTRACT

Jinshui-Huanxian granules (JHGs), a Chinese herbal compound prescription, have shown a therapeutic effect in reducing lung tissue damage, improving the degree of pulmonary fibrosis, replenishing lungs and kidneys, relieving cough and asthma, reducing phlegm, and activating blood circulation. However, these active compounds' pharmacokinetics and metabolic processes were unclear. This study aimed to compare the pharmacokinetics, reveal the metabolic dynamic changes, and obtain the basic pharmacokinetic parameters of 16 main bioactive compounds after intragastric administration of JHGs in control and pulmonary fibrosis (PF) model rats by using Orbitrap Fusion MS. After administration of JHGs, the rat plasma was collected at different times. Pretreating the plasma sample with methanol and internal standard (IS) solution carbamazepine (CBZ), and it was then applied to a C18 column by setting gradient elution with a mobile phase consisting of methanol 0.1% formic acid aqueous solution. Detection was performed on an electrospray ionization source (ESI), and the scanning mode was SIM. Pharmacokinetic parameters were analyzed according to the different analytes' concentrations in plasma. The matrix effect was within the range of 79.01-110.90%, the extraction recovery rate was 80.37-102.72%, the intra-day and inter-day precision relative standard deviation (RSD) was less than 7.76%, and the stability was good, which met the requirements of biological sample testing. The method was validated (r ≥ 0.9955) and applied to compare the pharmacokinetic profiles of the control group and PF model group after intragastric administration of the JHGs. The 16 analytes exhibited different pharmacokinetic behaviors in vivo. In the pathological state of the PF model, most of the components were more favorable for metabolism and absorption, and it was more meaningful to study the pharmacokinetics. Above all, this study provided an essential reference for exploring the mechanism of action of JHGs and guided clinical medication as well.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Fibrosis , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/analysis , Pulmonary Fibrosis/drug therapy , Methanol , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Reproducibility of Results
5.
Front Pharmacol ; 12: 758026, 2021.
Article in English | MEDLINE | ID: mdl-34744735

ABSTRACT

The purpose of this research was to explore the effect and mechanism of emodin in interfering with nitroglycerin-induced migraine rats. We carried out behavioral research within 2 h post-nitroglycerin (NTG) injection, and blood samples were collected through the abdominal aorta for measurements of nitric oxide (NO), calcitonin gene-related peptide (CGRP), substance P (SP), tumor necrosis factor (TNF-α) and cyclic guanosine monophosphate (cGMP) levels. Immunohistochemistry was adopted to detect the activation of c-Fos immunoreactive neurons in brain tissues. The number and integrated optical density (IOD) of c-Fos positive cells were measured using Image-Pro Plus. Western blotting was applied to detect the levels of PKG protein in rat brain tissues. The results showed that emodin can alleviate the pain response of migraine rats and significantly reduce the levels of NO, CGRP, SP, TNF-α and cGMP in migraine rats. In addition, emodin can significantly reduce the number of c-Fos positive cells and the IOD value. Moreover, the expression of PKG protein was significantly inhibited by emodin. Therefore, it is inferred that emodin can relieve migraine induced by NTG through the cGMP-PKG pathway, and can be used as a potential botanical medicine for the treatment of migraine.

6.
Drug Des Devel Ther ; 15: 557-576, 2021.
Article in English | MEDLINE | ID: mdl-33603345

ABSTRACT

PURPOSE: The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS: We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS: The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION: Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Colitis/drug therapy , Colorectal Neoplasms/drug therapy , Drug Delivery Systems , Flavones/pharmacology , Nanoparticles/chemistry , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Daphne/chemistry , Dose-Response Relationship, Drug , Drug Compounding , Emulsions , Flavones/administration & dosage , Flavones/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Nanoparticles/administration & dosage , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...