Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Food Funct ; 15(13): 6914-6928, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38855842

ABSTRACT

Pomegranate peel is the by-product of pomegranate processing, which contains a lot of triterpene compounds. In this study, the total triterpenes of pomegranate peel (TPP) were extracted using an ultrasonic-assisted ethanol extraction method under optimal conditions, purified using D-101 macroporous resin to obtain a purity of 75.28%. The triterpenes in TPP were mainly pentacyclic triterpenes determined by LC-MS/MS. Network pharmacological analysis predicted that the anticancer targets were closely related to the MAPK pathway. The in vitro results showed that TPP could inhibit cell proliferation, promote apoptosis, reduce mitochondrial membrane potential and increase ROS levels. The western blot results indicated that the expression levels of the apoptotic proteins Bax, Bcl-2, cytochrome C, cleaved caspase-3 and cleaved caspase-9 were increased. In addition, the protein expression of the MAPK pathway predicted by network pharmacology also changed significantly. These results provided that TPP has potential for adjuvant therapy of tumors.


Subject(s)
Apoptosis , Cell Proliferation , Plant Extracts , Pomegranate , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Humans , Pomegranate/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Membrane Potential, Mitochondrial/drug effects , Fruit/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
2.
J Hazard Mater ; 476: 134949, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901256

ABSTRACT

Kidney injury has become an increasing concern for patients because of environmental hazards and physiological factors. However, the early diagnosis of kidney injury remains challenging. Studies have shown that oxidative stress was closely related to the occurrence and development of kidney injury, in which abnormal hydrogen peroxide (H2O2) production was a common characteristic. Consequently, monitoring H2O2 level changes is essential for the diagnosis and management of kidney injury. Herein, based on fluorescence imaging advantages, a near-infrared fluorescent probe DHX-1 was designed to detect H2O2. DHX-1 showed high sensitivity and selectivity toward H2O2, with a fast response time and excellent imaging capacity for H2O2 in living cells and zebrafish. DHX-1 could detect H2O2 in pesticide-induced HK-2 cells, revealing the main cause of kidney injury caused by pesticides. Moreover, we performed fluorescence imaging, which confirmed H2O2 fluctuation in kidney injury caused by uric acid. In addition, DHX-1 achieved rapid screening of active compounds to ameliorate pesticide-induced kidney injury. This study presents a tool and strategy for monitoring H2O2 levels that could be employed for the early diagnosis and effective management of kidney injury.

3.
JACS Au ; 4(5): 1935-1940, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818075

ABSTRACT

Chiral N-alkoxy amines are increasingly vital substrates in bioscience. However, asymmetric synthetic strategies for these compounds remain scarce. Catalytic kinetic resolution represents an attractive approach to prepare structurally diverse enantiopure N-alkoxy amines, which has remained elusive due to the notably reduced nucleophilicity of the nitrogen atom together with the low bond dissociation energies of labile NO-C and N-O bonds. We here report a general kinetic resolution of N-alkoxy amines through chemo- and enantioselective oxygenation. The mild and green titanium-catalyzed approach features broad substrate scope (55 examples), noteworthy functional group compatibility, high catalyst turnover number (up to 5200), excellent selectivity factor (s > 150), and scalability.

4.
J Adv Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38609050

ABSTRACT

INTRODUCTION: It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE: To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS: The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS: PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION: This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.

5.
Curr Top Med Chem ; 23(28): 2640-2698, 2023.
Article in English | MEDLINE | ID: mdl-37818581

ABSTRACT

Species of genus Morus (family Moraceae) have been used as traditional medicinal and edible resources since ancient times. Genus Morus has been acknowledged as a promising resource for the exploration of novel compounds with various bioactivities. Phytochemical investigations of the genus have led to the discovery of more than approximately 453 natural products from 2011 to 2023, mainly including flavonoids, Diels-Alder adducts, 2-arylbenzfuran, alkaloids and stilbenes. Bioactive constituents and extracts of this genus displayed a wide range of impressive biological properties including antidiabetic, anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, renoprotective, and some other activities. Herein, the research progress of this genus Morus from 2011 to 2023 on phytochemistry and pharmacology are systematically presented and discussed for the first time. This current review provides the easiest access to the information on genus Morus for readers and researchers in view of enhancing the continuity on research done on this genus.


Subject(s)
Biological Products , Morus , Plants, Medicinal , Morus/chemistry , Biological Products/pharmacology , Plants, Medicinal/chemistry , Plant Extracts/chemistry , Flavonoids/pharmacology , Phytochemicals/pharmacology , Ethnopharmacology , Phytotherapy
6.
Int J Mol Sci ; 23(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35328696

ABSTRACT

Human gingival mesenchymal stem cells (GMSCs) are derived from migratory neural crest stem cells and have the potential to differentiate into neurons. Metformin can inhibit stem-cell aging and promotes the regeneration and development of neurons. In this study, we investigated the potential of metformin as an enhancer on neuronal differentiation of GMSCs in the growth environment of chitosan hydrogel. The crosslinked chitosan/ß-glycerophosphate hydrogel can form a perforated microporous structure that is suitable for cell growth and channels to transport water and macromolecules. GMSCs have powerful osteogenic, adipogenic and chondrogenic abilities in the induction medium supplemented with metformin. After induction in an induction medium supplemented with metformin, Western blot and immunofluorescence results showed that GMSCs differentiated into neuron-like cells with a significantly enhanced expression of neuro-related markers, including Nestin (NES) and ß-Tubulin (TUJ1). Proteomics was used to construct protein profiles in neural differentiation, and the results showed that chitosan hydrogels containing metformin promoted the upregulation of neural regeneration-related proteins, including ATP5F1, ATP5J, NADH dehydrogenase (ubiquinone) Fe-S protein 3 (NDUFS3), and Glutamate Dehydrogenase 1 (GLUD1). Our results help to promote the clinical application of stem-cell neural regeneration.


Subject(s)
Chitosan , Mesenchymal Stem Cells , Metformin , Cell Differentiation , Cells, Cultured , Chitosan/chemistry , Gingiva , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Metformin/metabolism , Metformin/pharmacology , Neurons
7.
Angew Chem Int Ed Engl ; 60(1): 176-180, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33112503

ABSTRACT

A manganese-catalyzed oxidative kinetic resolution of cyclic benzylic ethers through asymmetric C(sp3 )-H oxidation is reported. The practical approach is applicable to a wide range of 1,3-dihydroisobenzofurans bearing diverse functional groups and substituent patterns at the α position with extremely efficient enantiodiscrimination. The generality of the strategy was further demonstrated by efficient oxidative kinetic resolution of another type of five-membered cyclic benzylic ether, 2,3-dihydrobenzofurans, and six-membered 6H-benzo[c]chromenes. Direct late-stage oxidative kinetic resolution of bioactive molecules that are otherwise difficult to access was further explored.

8.
J Am Chem Soc ; 142(45): 19346-19353, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33140964

ABSTRACT

A manganese-catalyzed site- and enantiodifferentiating oxidation of C(sp3)-H bonds in saturated cyclic ethers has been described. The mild and practical method is applicable to a range of tetrahydrofurans, tetrahydropyrans, and medium-sized cyclic ethers with multiple stereocenters and diverse substituent patterns in high efficiency with extremely efficient site- and enantiodiscrimination. Late-stage application in complex biological active molecules was further demonstrated. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity. The ability to employ ether substrates as the limiting reagent, together with a broad substrate scope, and a high level of chiral recognition, represent a valuable demonstration of the utility of asymmetric C(sp3)-H oxidation in complex molecule synthesis.

9.
Fungal Genet Biol ; 144: 103440, 2020 11.
Article in English | MEDLINE | ID: mdl-32758529

ABSTRACT

Protein O-mannosyltransferases (PMTs) initiate O-mannosylation of proteins in the ER. Trichoderma reesei strains displayed a single representative of each PMT subfamily, Trpmt1, Trpmt2 and Trpmt4. In this work, two knockout strains ΔTrpmt1and ΔTrpmt4were obtained. Both mutants showed retarded growth, defective cell walls, reduced conidiation and decreased protein secretion. Additionally, the ΔTrpmt1strain displayed a thermosensitive growth phenotype, while the ΔTrpmt4 strain showed abnormal polarity. Meanwhile, OETrpmt2 strain, in which the Trpmt2 was over-expressed, exhibited increased conidiation, enhanced protein secretion and abnormal polarity. Using a lectin enrichment method and MS/MS analysis, 173 O-glycoproteins, 295 O-glycopeptides and 649 O-mannosylation sites were identified as the targets of PMTs in T. reesei. These identified O-mannoproteins are involved in various physiological processes such as protein folding, sorting, transport, quality control and secretion, as well as cell wall integrity and polarity. By comparing proteins identified in the mutants and its parent strain, the potential specific protein substrates of PMTs were identified. Based on our results, TrPMT1 is specifically involved inO-mannosylation of intracellular soluble proteins and secreted proteins, specially glycosidases. TrPMT2 is involved inO-mannosylation of secreted proteins and GPI-anchor proteins, and TrPMT4 mainly modifies multiple transmembrane proteins. The TrPMT1-TrPMT4 complex is responsible for O-mannosylation of proteins involved in cell wall integrity. Overexpression of TrPMT2 enhances protein secretion, which might be a new strategy to improve expression efficiency in T. reesei.


Subject(s)
Fungal Proteins/biosynthesis , Hypocreales/genetics , Mannosyltransferases/genetics , Morphogenesis/genetics , Cell Wall/genetics , Fungal Proteins/genetics , Glycosylation , Hypocreales/enzymology , Phenotype , Protein Transport/genetics , Tandem Mass Spectrometry
10.
Int J Biol Macromol ; 161: 1230-1239, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32544581

ABSTRACT

Polydatin (PD) is a bio-active ingredient with known anti-tumor effects. However, its specific protein targets yet have not been systematically screened, and the molecular anti-tumor mechanism is still unclear. Here, proteomic-chip was efficiently used to screen potential targets of PD. First, we investigated through animal experiment and proteomics studies, and found that polydatin play an important role in tumor cells. Then, the red-green fluorescent of polydatin was compared comprehensively to screen its targets on chip, followed by bioinformatics analysis. Glutathione synthetase (GSS) was selected as candidate research target. After a series of molecular biological experiments GSS was confirmed a target protein for PD in vitro. Moreover, we also found that PD can significantly inhibit the activity of GSS in vitro and live cells. Our findings reveal that PD could be a selective small-molecule GSS enzyme activity inhibitor and GSS could be a potential therapeutic target in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Glucosides/pharmacology , Glutathione Synthase/antagonists & inhibitors , High-Throughput Screening Assays , Proteome , Proteomics , Stilbenes/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans
11.
Org Biomol Chem ; 18(18): 3522-3526, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32334426

ABSTRACT

para-Quinone methides bearing an electron-withdrawing cyano group at the exocyclic methylene δ-position were identified as valuable 1,6-conjugate addition building blocks for acyclic all-carbon quaternary stereocenter construction. A wide variety of electron-rich arenes as nucleophiles were tolerated, effectively furnishing diverse unsymmetrical triarylmethanes bearing all-carbon quaternary stereocenters. The robust transformable abilities of the cyano group provide a platform to access other valuable functional group-containing unsymmetrical tri- and tetraarylmethanes that are otherwise difficult to be prepared. Computational studies supported the hypothesis that the cyano group at the δ-position tunes the molecular electron-density distribution, and the stability of para-quinone methides is enhanced by lowering their polymerizability.

12.
Fungal Genet Biol ; 134: 103285, 2020 01.
Article in English | MEDLINE | ID: mdl-31648060

ABSTRACT

Protein O-mannosyltransferases (PMTs) have been identified in fungi but not in plants and nematodes, which makes PMTs become attractive targets for developing a new strategy against phytopathogens. Three PMTs have been identified in Fusarium oxysporum, a fungal pathogen that causes vascular wilt in a broad range of economical crops. By deletion or suppression of the pmt genes, we showed that all mutants displayed retarded growth, reduced conidiation, cell wall defects, ER stress and attenuated virulence in F. oxysporum f.sp. cucumerinum. In addition, the Δpmt1 exhibited reduced thermotolerance, while the Δpmt4 and the pmt2 conditional mutant exhibited abnormal polarized growth. Comparative glycoproteome analysis of these pmt mutants revealed that PMTs preferentially modified random coils with flanking regions rich in Ser, Thr, Ala, Glu, Asp and Lys at the stem region of membrane proteins, the N-terminal region close to signal peptide of secreted proteins, or surface of soluble proteins. PMT1 specifically acted on nuclear proteins and proteins that are responsible for protein folding, which might contribute to thermotolerance. PMT4 specifically acted on the membrane and soluble proteins in secretory pathways, especially the GPI anchoring pathway, which might contribute to synthesis and transportation of GPI anchored proteins and thus polarized growth. PMT2 was responsible for modification of proteins that are required for protein folding and cell wall synthesis, which might make PMT2 essential. Our results gave an insight to understanding of the roles of each O-mannosyltransferase in F. oxysporum f.sp. cucumerinum and provide a new perspective to prevent Fusarium wilt.


Subject(s)
Fungal Proteins/genetics , Fusarium/enzymology , Fusarium/pathogenicity , Genes, Fungal , Mannosyltransferases/genetics , Cell Wall/metabolism , Cell Wall/pathology , Crops, Agricultural/microbiology , Cucumis sativus/microbiology , Fungal Proteins/metabolism , Fusarium/genetics , Gene Deletion , Organisms, Genetically Modified , Phenotype , Plant Diseases/microbiology , Protein Folding , Seeds/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Virulence/genetics
13.
Org Lett ; 20(23): 7522-7525, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30457345

ABSTRACT

A practical and modular three-component alkene oxyarylation with benzoquinone and H2O to rapidly access C3-substituted dihydrobenzofurans has been developed. The (NH4)2S2O8-mediated redox-relay process has an excellent regioselectivity and functional group tolerance and exhibits a broad scope of simple alkenes, rapidly furnishing a variety of the substructures that would require multiple steps to prepare with traditional methods. Mechanistic studies revealed a dual role of benzoquinone serving as both the arylation agent and the origin of dihydroquinone for the reductive cyclization step.

14.
Nat Commun ; 9(1): 4791, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30442885

ABSTRACT

In bacterial cells, histidine kinases (HKs) are receptors that monitor environmental and intracellular stimuli. HKs and their cognate response regulators constitute two-component signalling systems (TCSs) that modulate cellular homeostasis through reversible protein phosphorylation. Here the authors show that the plant pathogen Xanthomonas campestris pv. campestris responds to osmostress conditions by regulating the activity of a HK (VgrS) via irreversible, proteolytic modification. This regulation is mediated by a periplasmic, PDZ-domain-containing protease (Prc) that cleaves the N-terminal sensor region of VgrS. Cleavage of VgrS inhibits its autokinase activity and regulates the ability of the cognate response regulator (VgrR) to bind promoters of downstream genes, thus promoting bacterial adaptation to osmostress.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Histidine Kinase/genetics , Peptide Hydrolases/genetics , Xanthomonas campestris/genetics , Amino Acid Sequence , Bacterial Proteins/metabolism , Brassica/microbiology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histidine Kinase/metabolism , Homeostasis/genetics , Osmotic Pressure , PDZ Domains , Peptide Hydrolases/metabolism , Phosphorylation , Plant Diseases/microbiology , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Xanthomonas campestris/enzymology
15.
Org Lett ; 20(21): 6836-6839, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30350661

ABSTRACT

An unprecedented (NH4)2S2O8 mediated metal-free three-component alkene oxyalkynylation using H2O or alcohol as oxygenation agent is described. Mechanistic studies suggested that the reversed regioselectivity should be dictated by an alkene radical cation intermediate.

16.
Angew Chem Int Ed Engl ; 57(35): 11413-11417, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30016576

ABSTRACT

An alkoxyl radical guided strategy for site-selective functionalization of unactivated methylene and methine C-H bonds enabled by an FeII -catalyzed redox process is described. The mild, expeditious, and modular protocol allows efficient remote aliphatic fluorination, chlorination, amination, and alkynylation of structurally and electronically varied primary, secondary, and tertiary hydroperoxides with excellent functional-group tolerance. The application for one-pot 1,4-hydroxyl functionalization of non-oxygenated alkane substrates initiated by aerobic C-H oxygenation is also demonstrated.

17.
Appl Environ Microbiol ; 84(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29247062

ABSTRACT

Cerecidins are small lantibiotics from Bacillus cereus that were obtained using a semi-in vitro biosynthesis strategy and showed prominent antimicrobial activities against certain Gram-positive bacteria. However, the parental strain B. cereus As 1.1846 is incapable of producing cerecidins, most probably due to the transcriptional repression of the cerecidin gene cluster. Located in the cerecidin gene cluster, cerR encodes a putative response regulator protein that belongs to the LuxR family transcriptional regulators. CerR (84 amino acids) contains only a conserved DNA binding domain and lacks a conventional phosphorylation domain, which is rarely found in lantibiotic gene clusters. To investigate its function in cerecidin biosynthesis, cerR was constitutively expressed in B. cereus As 1.1846. Surprisingly, Constitutive expression of cerR enabled the production of cerecidins and enhanced self-immunity of B. cereus toward cerecidins. Reverse transcription-PCR analysis and electrophoresis mobility shift assays indicated, respectively, that the cer cluster was transcribed in two transcripts (cerAM and cerRTPFE) and that CerR regulated the cerecidin gene cluster directly by binding to the two predicted promoter regions of cerA and cerR DNase I footprinting experiments further confirmed that CerR specifically bound to the two promoter regions at a conserved inverted repeat sequence that was designated a CerR binding motif (cerR box). The present study demonstrated that CerR, as the first single-domain LuxR family transcriptional regulator, serves as a transcriptional activator in cerecidin biosynthesis and activates the cerecidin gene cluster, which was otherwise cryptic in B. cereusIMPORTANCE Lantibiotics with intriguing and prominent bioactivities are potential peptide antibiotics that could be applied in many areas, including food and pharmaceutical industries. The biosynthesis of lantibiotics is generally controlled by two-component regulatory systems consisting of histidine kinases and response regulators, while some unique and interesting regulatory systems are also revealed with the ever-increasing discovery of lantibiotic gene clusters among diverse microorganisms. Dissection of diverse lantibiotic regulation machineries would permit deep understanding of the biological functions of lantibiotics in different niches and even enable genetic activation of lantibiotic gene clusters that are otherwise cryptic. The significance of our study is to illuminate the regulatory mechanism of a special single-domain protein, CerR, in regulating cerecidin biosynthesis in Bacillus cereus, providing a possible novel approach to activate cryptic lantibiotic clusters.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/genetics , Bacteriocins/metabolism , DNA, Bacterial/genetics , Transcription Factors/genetics , Amino Acid Sequence , Bacillus cereus/immunology , Bacterial Proteins/metabolism , Bacteriocins/genetics , Base Sequence , Gene Expression Regulation, Bacterial , Multigene Family , Transcription Factors/metabolism
18.
Angew Chem Int Ed Engl ; 56(18): 5116-5120, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28370976

ABSTRACT

The first redox deracemization of a series of cyclic benzylic ethers, including 6H-benzo[c]chromenes, isochromans, and 1H-isochromenes, is described. An "acetal pool" strategy was adopted to harmonize the complete oxidation of secondary ethers with imidodiphosphoric acid catalyzed asymmetric transfer hydrogenation. The synthetic utility of the process was demonstrated by the effective deracemization of biologically active molecules of interest that are difficult to prepare by other methods.

19.
Org Lett ; 18(16): 3944-7, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27483043

ABSTRACT

The existing catalytic enantioselective cross-dehydrogenative coupling of cyclic amines predominantly focused on reactive N-aryl tetrahydroisoquinolines, which typically suffered from limited substrate generality and synthetic utility, and required the use of metal catalyst. Herein, a metal-free catalytic enantioselective cross-dehydrogenative coupling of N-carbamoyl cyclic amines and aldehydes has been reported for the first time. Employing an easily installed and functionalized acyl protecting group rather than the widely adopted aryl moiety endows the enantioselective process with better substrate generality and broader synthetic utility.

20.
Plant Physiol ; 170(4): 2392-406, 2016 04.
Article in English | MEDLINE | ID: mdl-26869704

ABSTRACT

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.


Subject(s)
Gossypium/metabolism , Gossypium/microbiology , Homeostasis , Plant Diseases/microbiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Verticillium/physiology , Disease Resistance , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Organ Specificity/genetics , Phylogeny , Plant Roots/metabolism , Plant Vascular Bundle/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...