Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172349, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615770

ABSTRACT

Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.


Subject(s)
Biomass , Fungi , Nitrogen , Pinus , Soil Microbiology , Soil , China , Pinus/microbiology , Nitrogen/analysis , Soil/chemistry , Mycorrhizae/physiology , Mycobiome , Forests , Fertilizers/analysis
2.
Ecotoxicol Environ Saf ; 261: 115107, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290298

ABSTRACT

Under the influence of different types of disinfectants and disinfection environments, the removal level of pathogens and the formation potential of disinfection by-products (DBPs) will have a dual impact on the groundwater environment. The key points for sustainable groundwater safety management are how to balance the positive and negative relationship and formulate a scientific disinfection model in combination with risk assessment. In this study, the effects of sodium hypochlorite (NaClO) and peracetic acid (PAA) concentrations on pathogenic E. coli and DBPs were investigated using static-batch and dynamic-column experiments, as well as the optimal disinfection model for groundwater risk assessment was explored using quantitative microbial risk assessment and disability-adjusted life years (DALYs) models. Compared to static disinfection, deposition and adsorption were the dominant factors causing E. coli migration at lower NaClO levels of 0-0.25 mg/L under dynamic state, while disinfection was its migration factor at higher NaClO levels of 0.5-6.5 mg/L. In contrast, E. coli removed by PAA was the result of the combined action of deposition, adsorption, and disinfection. The disinfection effects of NaClO and PAA on E. coli differed under dynamic and static conditions. At the same NaClO level, the health risk associated with E. coli in groundwater was higher, whereas, under the same PAA conditions, the health risk was lower. Under dynamic conditions, the optimal disinfectant dosage required for NaClO and PAA to reach the same acceptable risk level was 2 and 0.85 times (irrigation) or 0.92 times (drinking) of static disinfection, respectively. The results may help prevent the misuse of disinfectants and provide theoretical support for managing twin health risks posed by pathogens and DBPs in water treatment.


Subject(s)
Disinfectants , Groundwater , Water Purification , Disinfection/methods , Escherichia coli , Disinfectants/pharmacology , Peracetic Acid , Water Purification/methods , Risk Assessment
3.
Chemosphere ; 330: 138728, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37080470

ABSTRACT

Phytoremediation is currently a more environmentally friendly and economical measure for the remediation of cadmium (Cd) contaminated soil. Heavy metal-resistant plant species, Cannabis sativa L. was inoculated with Rhizophagus irregularis to investigate the mechanisms of mycorrhizal in improving the Cd remediation ability of C. sativa. The results showed that after inoculation with R. irregularis, C. sativa root Cd contents increased significantly, and leaf Cd enrichment decreased significantly. At the transcriptional level, R. irregularis down-regulated the expression of the ABC transporter family but up-regulated differentially expressed genes regulating low molecular weight organic acids. The levels of malic acid, citric acid, and lactic acid were significantly increased in the rhizosphere soil, and they were significantly and strongly related to oxidizable Cd concentrations. Then citric acid levels were considerably and positively connected to exchangeable Cd concentrations. Our findings revealed that through regulating the movement of root molecules, arbuscular mycorrhizal fungus enhanced the heavy metal tolerance of C. sativa even more, meanwhile, they changed the Cd chemical forms by altering the composition of low molecular weight organic acids, which in turn affected soil Cd bioavailability.


Subject(s)
Cannabis , Glomeromycota , Metals, Heavy , Mycorrhizae , Soil Pollutants , Mycorrhizae/metabolism , Cadmium/metabolism , Cannabis/genetics , Cannabis/metabolism , Glomeromycota/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Soil , Biodegradation, Environmental , Plant Roots/metabolism
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835052

ABSTRACT

The breeding of salt-tolerant rootstock relies heavily on the availability of salt-tolerant Malus germplasm resources. The first step in developing salt-tolerant resources is to learn their molecular and metabolic underpinnings. Hydroponic seedlings of both ZM-4 (salt-tolerant resource) and M9T337 (salt-sensitive rootstock) were treated with a solution of 75 mM salinity. ZM-4's fresh weight increased, then decreased, and then increased again after being treated with NaCl, whereas M9T337's fresh weight continued to decrease. The results of transcriptome and metabolome after 0 h (CK) and 24 h of NaCl treatment showed that the leaves of ZM-4 had a higher content of flavonoids (phloretinm, naringenin-7-O-glucoside, kaempferol-3-O-galactoside, epiafzelechin, etc.) and the genes (CHI, CYP, FLS, LAR, and ANR) related to the flavonoid synthesis pathway showed up-regulation, suggesting a high antioxidant capacity. In addition to the high polyphenol content (L-phenylalanine, 5-O-p-coumaroyl quinic acid) and the high related gene expression (4CLL9 and SAT), the roots of ZM-4 exhibited a high osmotic adjustment ability. Under normal growing conditions, the roots of ZM-4 contained a higher content of some amino acids (L-proline, tran-4-hydroxy-L-prolin, L-glutamine, etc.) and sugars (D-fructose 6-phosphate, D-glucose 6-phosphate, etc.), and the genes (GLT1, BAM7, INV1, etc.) related to these two pathways were highly expressed. Furthermore, some amino acids (S-(methyl) glutathione, N-methyl-trans-4-hydroxy-L-proline, etc.) and sugars (D-sucrose, maltotriose, etc.) increased and genes (ALD1, BCAT1, AMY1.1, etc.) related to the pathways showed up-regulation under salt stress. This research provided theoretical support for the application of breeding salt-tolerant rootstocks by elucidating the molecular and metabolic mechanisms of salt tolerance during the early stages of salt treatment for ZM-4.


Subject(s)
Malus , Salt Tolerance , Stress, Physiological , Transcriptome , Amino Acids/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Malus/genetics , Metabolome , Phosphates/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Salt Tolerance/genetics , Sodium Chloride/metabolism , Stress, Physiological/genetics
5.
Environ Pollut ; 323: 121282, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796664

ABSTRACT

The vadose zone is a critical zone for microbial entry into the subsurface environment, and various types of inorganic and organic colloids can affect the migration of pathogenic bacteria. In the study, we explored the migration behavior of Escherichia coli O157:H7 with humic acids (HA), iron oxides (Fe2O3) or their mixture, uncovering their migration mechanisms in the vadose zone. The effect of complex colloids on the physiological properties of E. coli O157:H7 was analyzed based on the measured particle size, zeta potential and contact angle. HA colloids significantly promoted the migration of E. coli O157:H7, where Fe2O3 was opposite. The migration mechanism of E. coli O157:H7 with HA and Fe2O3 is obviously different. Multiple colloids dominated by organic colloid will further highlight its promoting effect on E. coli O157:H7 under the guidance of electrostatic repulsion due to the influence of colloidal stability. Multiple colloids dominated by metallic colloid will inhibit the migration of E. coli O157:H7 under the control of capillary force due to the restriction of contact angle. The risk of secondary release of E. coli O157:H7 can be effectively reduced when the ratio of HA/Fe2O3 is ≥ 1. Combining this conclusion with the distribution characteristics of soil in China, an attempt was made to analyse the migration risk of E. coli O157:H7 on a national scale. In China, from north to south, the migration capacity of E. coli O157:H7 gradually decreased, and the risk of secondary release gradually increased. These results provide ideas for the subsequent study of the effect of other factors on the migration of pathogenic bacteria on a national scale and provide risk information about soil colloids for the construction of pathogen risk assessment model under comprehensive conditions in the future.


Subject(s)
Escherichia coli O157 , Escherichia coli O157/physiology , Porosity , Soil , Humic Substances , Colloids , Colony Count, Microbial
6.
Int J Mol Sci ; 24(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36614250

ABSTRACT

Apples are a major horticultural crop worldwide. Grafting techniques are widely utilized in apple production to keep the varieties pure. Interstocks are frequently used in Northern China to achieve intensive apple dwarfing cultivation. High-throughput sequencing was used to investigate differentially expressed genes in the phloem tissues of two different xenograft systems, M ('Gala'/'Mac 9'/Malus baccata (L.) Borkh.) and B ('Gala'/Malus baccata (L.) Borkh.). The results showed that dwarfing interstocks could significantly reduce the height and diameters of apple trees while have few effects on the growth of annual branches. The interstocks were found to regulate the expression of genes related to hormone metabolism and tree body control (GH3.9, PIN1, CKI1, ARP1, GA2ox1 and GA20ox1), these effects may attribute the dwarf characters for apple trees with interstocks. Besides, the interstocks reduce photosynthesis-related genes (MADH-ME4 and GAPC), promote carbon (C) metabolism gene expression (AATP1, GDH and PFK3), promote the expression of nitrogen (N)-metabolism-related genes (NRT2.7, NADH and GDH) in rootstocks, and improve the expression of genes related to secondary metabolism in scions (DX5, FPS1, TPS21 and SRG1). We also concluded that the interstocks acquired early blooming traits due to promotion of the expression of flowering genes in the scion (MOF1, FTIP7, AGL12 and AGL24). This study is a valuable resource regarding the molecular mechanisms of dwarf interstocks' influence on various biological processes and transplantation systems in both scions and rootstocks.


Subject(s)
Malus , Humans , Malus/metabolism , Gene Expression Profiling , Phenotype , China , Gene Expression Regulation, Plant , NIMA-Interacting Peptidylprolyl Isomerase/metabolism
7.
Life (Basel) ; 12(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36431064

ABSTRACT

Understanding the different physiological responses of Malus species under salt stress in the seedling stages will be useful in breeding salt-tolerant dwarfing apple rootstocks. Seedlings of Malus Zumi (Mats.) Rehd. (M. zumi), Malus sieversii (Led.) Roem. (M. sieversii), and Malus baccata (L.) Borkh. (M. baccata) were treated with solution of 0, 0.20%, 0.40%, and 0.60% salinity. Physiological parameters of their leaves and roots were measured at 0 d, 4 d, 8 d and 12 d after salinity treatments. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondialdehyde (MDA), solution protein (SP), and proline (PRO) initially increased and then decreased. The activities and contents of these parameters were higher in the 0.40% and 0.60% NaCl treatments than in the 0.20% treatment and in the 0% control. M. zumi was the most resistant to salt stress, showing the lowest content of MDA in the leaves and roots, which increased slightly under salt stress. M. baccata had the highest increase in both the content and proportion of MDA. High enzyme activity was shown to play an important role in the salt resistance of M. zumi. Moreover, it can be speculated that there are other substances that also play a major role. We found that osmotic regulation played a key role in response to salt stress for M. baccata even though it was sensitive to salt stress. For M. sieversii, both the osmotic regulation and enzymatic antioxidants were observed to play a major role in mitigating salt stress.

8.
Environ Pollut ; 314: 120309, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181931

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF-crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 µmol/m2/s, and the optical compensation point reached 24.0 µmol/m2/s under Cd stress. The Ri-hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri-hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri-hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.


Subject(s)
Cannabis , Mycorrhizae , Cadmium/toxicity , Soil , Chlorophyll , Plant Roots
9.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682639

ABSTRACT

LncRNAs impart crucial effects on various biological processes, including biotic stress responses, abiotic stress responses, fertility and development. The apple tree is one of the four major fruit trees in the world. However, lncRNAs's roles in different tissues of apple are unknown. We identified the lncRNAs in five tissues of apples including the roots, phloem, leaves, flowers, and fruit, and predicted the intricate regulatory networks. A total of 9440 lncRNAs were obtained. LncRNA target prediction revealed 10,628 potential lncRNA-messenger RNA (mRNA) pairs, 9410 pairs functioning in a cis-acting fashion, and 1218 acting in a trans-acting fashion. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to photosynthesis-antenna proteins, single-organism metabolic process and glutathione metabolism. Additionally, a total of 88 lncRNAs have various functions related to microRNAs (miRNAs) as miRNA precursors. Interactions between lncRNAs and miRNAs were predicted, 1341 possible interrelations between 187 mdm-miRNAs and 174 lncRNAs (1.84%) were identified. MSTRG.121644.5, MSTRG.121644.8, MSTRG.2929.2, MSTRG.3953.2, MSTRG.63448.2, MSTRG.9870.2, and MSTRG.9870.3 could participate in the functions in roots as competing endogenous RNAs (ceRNAs). MSTRG.11457.2, MSTRG.138614.2, and MSTRG.60895.2 could adopt special functions in the fruit by working with miRNAs. A further analysis showed that different tissues formed special lncRNA-miRNA-mRNA networks. MSTRG.60895.2-mdm-miR393-MD17G1009000 may participate in the anthocyanin metabolism in the fruit. These findings provide a comprehensive view of potential functions for lncRNAs, corresponding target genes, and related lncRNA-miRNA-mRNA networks, which will increase our knowledge of the underlying development mechanism in apple.


Subject(s)
Malus , MicroRNAs , RNA, Long Noncoding , Flowers/genetics , Flowers/metabolism , Fruit/genetics , Fruit/metabolism , Gene Regulatory Networks , Malus/genetics , Malus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phloem/genetics , Phloem/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
10.
Genes (Basel) ; 13(4)2022 04 18.
Article in English | MEDLINE | ID: mdl-35456518

ABSTRACT

Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in different tissues of apple are currently unknown. A total of 6495 unique circRNAs were identified from roots, phloem, leaves, flowers and fruits; 65.99% of them were intergenic circRNAs. Similar to other plants, tissue-specific expression was also observed for apple circRNAs; only 175 (2.69%) circRNAs were prevalently expressed in all five different tissues, while 1256, 1064, 912, 904 and 1080 circRNAs were expressed only in roots, phloem, leaves, flowers and fruit, respectively. The hosting-genes of circRNAs showed significant differences enriched in COG, GO terms or KEGG pathways in five tissues, suggesting the special functions of circRNAs in different tissues. Potential binding interactions between circRNAs and miRNAs were investigated using TargetFinder; 2989 interactions between 647 circRNAs and 192 miRNA were predicated in the present study. It also predicted that Chr00:18744403|18744580-mdm-miR160 might play an important role in the formation of flowers or in regulating the coloration of flowers, Chr10:6857496|6858910-mdm-miR168 might be involved in response to drought stress in roots, and Chr03:1226434|1277176 may absorb mdm-miR482a-3p and play a major role in disease resistance. Two circRNAs were experimentally analyzed by qRT-PCR with divergent primers, the expression levels were consistent with RNA-seq, which indicates that the RNA-seq datasets were reliable.


Subject(s)
Malus , MicroRNAs , Flowers/genetics , Flowers/metabolism , Fruit/genetics , Fruit/metabolism , Malus/genetics , MicroRNAs/genetics , Phloem/genetics , Phloem/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Circular/genetics
11.
Chin J Integr Med ; 27(9): 649-655, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33709237

ABSTRACT

OBJECTIVE: To observe the clinical effect of high suspension and low incision (HSLI) surgery on mixed haemorrhoids, compared with Milligan-Morgan haemorrhoidectomy. METHODS: A multi-centre, randomized, single-blind, non-inferiority clinical trial was performed. Participants with mixed haemorrhoids from Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing Rectum Hospital, Air Force Medical Center of People's Liberation Army of China, and Puyang Hospital of Traditional Chinese Medicine were enrolled from September 2016 to March 2018. By using a blocked randomization scheme, participants were assigned to two groups. The experimental group was treated with HSLI, while the control group was treated with Milligan-Morgan haemorrhoidectomy. The primary outcome was the clinical effect evaluated at 12 weeks after operation. The secondary outcomes included the number of haemorrhoids treated during the operation, pain scores, use of analgesics, postoperative oedema, wound healing, incidence of anal stenosis, anorectal manometry after operation, as well as surgical duration, length of stay and total hospitalization expenses. A safety evaluation was also conducted. RESULTS: In total, 246 eligible participants were enrolled, with 123 cases in each group. There was no significant difference in the clinical effect between the two groups (100.00% vs. 99.19%, P>0.05). Compared with the control group, the number of external haemorrhoids treated during the operation and the pain scores after operation were significantly reduced in the experimental group (P<0.05 or P<0.01); the patient number with wound healing at 2 weeks after operation and the functional length of anal canal at 12 weeks after operation were significantly increased in the experimental group (P<0.05). There was no significant difference in the incidence of anal stenosis, the numbers of patients using analgesics and patients with postoperative oedema between the two groups after operation (P>0.05). The surgical duration and length of stay in the experimental group were significantly longer than those in the control group, and the total hospitalization expense was significantly higher than that in the control group (all P<0.05). No adverse events were reported in either group during the whole trial or follow-up period. CONCLUSION: HSLI had the advantages of preserving the skin of anal canal completely, alleviating postsurgical pain and promoting rapid recovery after operation. (Registration No. ChiCTR1900022883).


Subject(s)
Digestive System Surgical Procedures , Hemorrhoids , Hemorrhoids/surgery , Humans , Ligation , Medicine, Chinese Traditional , Single-Blind Method , Treatment Outcome
12.
Environ Pollut ; 270: 116072, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33223339

ABSTRACT

The vadose zone is the first natural layer preventing groundwater pollution. Understanding virus transport and retention in the vadose zone is necessary. The effects of different interfaces and mechanisms on virus transport and retention were investigated by studying Escherichia coli phage migration in laboratory-scale columns under unsaturated conditions. The E. coli phage was used as a model virus. Colloid filtration theory, extended Derjagin-Landau-Verwey-Overbeek theory and two-site kinetic deposition model were used to calculate fitted parameters and interaction energies to assess virus retention at different interfaces. The collector diameters and the size of E. coli phages in the influent and effluent were compared to assess the effect of straining. The results indicated that the roles of solid-water interfaces (SWIs) and air-water interfaces (AWIs) in retaining E. coli phages are strongly controlled by the moisture content and hydrochemical conditions. Decreasing the moisture content and increasing the ionic strength (IS) of the suspension increased E. coli phage retention. At suspension ISs of 0.01 or 0.03 M and various moisture contents, E. coli phages were mainly retained at the SWIs rather than AWIs. When the IS was increased to 0.06 M, the viruses were strongly retained by becoming attached to both SWIs and AWIs. The role of straining in virus retention could not be ignored. Viruses were retained more at the SWIs and less straining occurred under acidic conditions than under neutral or alkaline conditions. This was mainly because of the effects of the pH and IS on surface charges and the model virus particle size. This study has important implications for modeling and predicting virus transport in soil affected by rainfall, snowmelt, and human activities (e.g., irrigation and artificial groundwater recharging).


Subject(s)
Escherichia coli , Viruses , Colloids , Humans , Kinetics , Porosity
13.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3589-3596, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33314850

ABSTRACT

Soil salinization induced by the dual effects of natural environment and human activities is a serious ecological problem globally. Salinization caused osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, leading to retard, reduce biomass and even total crop failure. Arbuscular mycorrhizal fungi (AMF) is a group of beneficial microorganism with wide distribution. AMF can form symbiotic relationship with most plant roots, with ecological significance in various stressed ecosystems. Because of the highly effective antioxidative system in symbionts, AMF could improve plant anti-oxidative response under salt stress and enhance their tolerance to salt stress. Here, we reviewed the research progress of arbuscular mycorrhizal symbiosis in improing plant antioxidative mechanism, including oxidative damage, osmotic regulation, antio-xidant mechanism and bioactive molecules. Finally, research prospects were proposed to provide theoritical support for improving plant salt tolerance by mycorrhizal biotechnology.


Subject(s)
Mycorrhizae , Ecosystem , Oxidative Stress , Plant Roots , Plants , Salt Stress , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...