Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Med ; 51(5)2023 May.
Article in English | MEDLINE | ID: mdl-37026504

ABSTRACT

Liver fibrosis is an early pathological feature of hepatic diseases. Hepatic stellate cell (HSC) activation and disordered proliferation are associated with liver fibrosis. The present study identified significant differences in the expression levels of microRNA (miRNA/miR)­29b­3p in clinical samples and multiple miRNA databases. Subsequently, the specific antifibrotic mechanism of miR­29b­3p was further elucidated. Reverse transcription­quantitative PCR, western blot, ELISA and immunofluorescence were used to detect the expression levels of target genes and proteins. Oil red O, Nile red and trypan blue staining were used to evaluate HSC activation and cell viability. A luciferase assay was used to detect the relationship between miR­29b­3p and VEGFA. Adhesion, wound healing, apoptosis double staining and JC­1 assays were used to detect the effects of VEGFR1 and VEGFR2 knockdown on HSCs. Immunoprecipitation and fluorescence colocalization were used to identify interactions between the proteins. Furthermore, a rat fibrosis model was constructed to investigate the effects of dihydroartemisinin (DHA) and miR­29b­3p in vivo and in vitro. The results indicated that miR­29b­3p both inhibited the activation of HSCs and limited the proliferation of activated HSCs via lipid droplet recovery and VEGF pathway regulation. VEGFA was identified as a direct target of miR­29b­3p, and knockdown of VEGFA induced cell apoptosis and autophagy. Notably, VEGFR1 and VEGFR2 knockdown both promoted apoptosis; however, VEGFR1 knockdown inhibited autophagy, whereas VEGFR2 knockdown induced autophagy. Furthermore, it was revealed that VEGFR2 regulated autophagy by mediating the PI3K/AKT/mTOR/ULK1 pathway. VEGFR2 knockdown also led to ubiquitination of heat shock protein 60, ultimately inducing mitochondrial apoptosis. Finally, DHA was identified as a natural agonist of miR­29­3p that effectively prevented liver fibrosis in vivo and in vitro. Overall, the present study determined the molecular mechanism by which DHA inhibited HSC activation and prevented liver fibrosis.


Subject(s)
MicroRNAs , Signal Transduction , Rats , Animals , Hepatic Stellate Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , MicroRNAs/metabolism , Cell Proliferation/genetics
2.
Phytomedicine ; 107: 154460, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36182798

ABSTRACT

BACKGROUND: Qingchang Wenzhong Decoction (QCWZD), a chinese herbal prescription, is widely used for ulcerative colitis (UC). Nevertheless, the active ingredients and mechanism of QCWZD in UC have not yet been explained clearly. PURPOSE: This research focuses on the identification of the effective ingredients of QCWZD and the prediction and verification of their potential targets. METHODS: The UC mice were established by adding 3.0% dextran sulfate sodium (DSS) to sterile water for one week. Concurrently, mice in the treatment group were gavage QCWZD or mesalazine. LC-MS analyzed the main components absorbed after QCWZD treatment, and network pharmacology predicted their possible targets. ELISA, qPCR, immunohistochemistry and immunofluorescence experiments were used to evaluate the colonic inflammation level and the intestinal barrier completeness. The percentage of Th17 and Treg lymphocytes was detected by flow cytometry. RESULTS: After QCWZD treatment, twenty-seven compounds were identified from the serum. In addition, QCWZD treatment significantly reduced the increased myeloperoxidase (MPO) and inflammatory cell infiltration caused by DSS in the colonic. In addition, QCWZD can reduce the secretion of inflammatory factors in serum and promote the expression of mRNAs and proteins of occludin and ZO-1. Network pharmacology analysis indicated that inhibiting IL-6-STAT3 pathway may be necessary for QCWZD to treat UC. Flow cytometry analysis showed that QCWZD can restore the normal proportion of Th17 lymphocytes in UC mice. Mechanistically, QCWZD inhibited the phosphorylation of JAK2-STAT3 pathway, reducing the transcriptional activation of RORγT and IL-17A. CONCLUSIONS: Overall, for the first time, our work revealed the components of QCWZD absorbed into blood, indicated that the effective ingredients of QCWZD may inhibit IL-6-STAT3 pathway and inhibit the differentiation of Th17 lymphocytes to reduce colon inflammation.


Subject(s)
Colitis, Ulcerative , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Dextran Sulfate , Disease Models, Animal , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Mesalamine/metabolism , Mesalamine/pharmacology , Mesalamine/therapeutic use , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Occludin/metabolism , Peroxidase/metabolism , Th17 Cells , Water
3.
Front Genet ; 13: 905353, 2022.
Article in English | MEDLINE | ID: mdl-36105081

ABSTRACT

Lung squamous cell carcinoma (LUSC) is one of the most lethal cancers worldwide. Traditional tumor-node-metastasis (TNM) staging system has many insufficiencies in predicting immune characteristics, overall survival (OS), and prognosis of LUSC. LncRNA is currently found involved in tumor development and effectively predicts tumor prognosis. We screened potential tumor-related lncRNAs for immune characteristics and constructed a nomogram combining lncRNA and traditional clinical indicators for prognosis prediction. We obtained the large-scale gene expression profiles of samples from 492 LUSC patients in The Cancer Genome Atlas database. SPATA41, AL034550.2, AP003721.2, AC106786.1, and AC078889.1 were finally screened to construct a 5-lncRNA-based signature. The risk score of the signature divided patients into subgroups of high-risk and low-risk with significant differences in OS. Their area under the curve (AUC) reached more than 0.70 in 1, 3, and 5 years. In addition, compared with the high-risk subgroup, the low-risk subgroup exhibited a remarkably favorable prognosis and TME score, along with a higher immune infiltration score and lower TIDE score. The signature also significantly related to chemotherapy response, especially in cisplatin, vinorelbine, and paclitaxel. Importantly, the nomogram we constructed had good reliability with the assessment of the calibration chart and consistency index (c-index). GO and KEGG enrichment analysis indicated that co-expression mRNAs of the 5 lncRNAs were mainly focused on RNA splicing, DNA replication, and protein serine/threonine kinase activity. Functional assays demonstrated that SPATA41, one of the five OS-related lncRNAs, regulated invasion, migration, proliferation, and programmed death in vitro. In summary, our 5-lncRNA-based signature has a good performance in predicting immune characteristics and prognosis of LUSC patients.

4.
PeerJ ; 10: e13376, 2022.
Article in English | MEDLINE | ID: mdl-35582617

ABSTRACT

Liver fibrosis is a repair response process after chronic liver injury. During this process, activated hepatic stellate cells (HSCs) will migrate to the injury site and secrete extracellular matrix (ECM) to produce fibrous scars. Clearing activated HSCs may be a major strategy for the treatment of liver fibrosis. Curcumol isolated from plants of the genus Curcuma can effectively induce apoptosis of many cancer cells, but whether it can clear activated HSCs remains to be clarified. In the present study, we found that the effect of curcumol in treating liver fibrosis was to clear activated HSCs by inducing necroptosis of HSCs. Receptor-interacting protein kinase 3 (RIP3) silencing could impair necroptosis induced by curcumol. Interestingly, endoplasmic reticulum (ER) stress-induced cellular dysfunction was associated with curcumol-induced cell death. The ER stress inhibitor 4-PBA prevented curcumol-induced ER stress and necroptosis. We proved that ER stress regulated curcumol-induced necroptosis in HSCs via Sirtuin-1(Sirt1)/Notch signaling pathway. Sirt1-mediated deacetylation of the intracellular domain of Notch (NICD) led to degradation of NICD, thereby inhibiting Notch signalling pathway to alleviate liver fibrosis. Specific knockdown of Sirt1 by HSCs in male ICR mice further exacerbated CCl4-induced liver fibrosis. Overall, our study elucidates the anti-fibrotic effect of curcumol and reveals the underlying mechanism between ER stress and necroptosis.


Subject(s)
Hepatic Stellate Cells , Sirtuin 1 , Mice , Animals , Sirtuin 1/genetics , Necroptosis , Mice, Inbred ICR , Liver Cirrhosis/chemically induced , Endoplasmic Reticulum Stress
5.
Phytother Res ; 36(6): 2660-2676, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35545249

ABSTRACT

The excessive deposition of extracellular matrix (ECM) is the main characteristic of liver fibrosis, and hepatic stellate cells (HSCs) are the main source of ECM. The removal of activated HSCs has a reversal effect on liver fibrosis. Western blot and MTT analysis indicated that curcumol could relieve hepatic fibrosis by promoting HSCs receptor-interacting protein kinase 1/3 (RIP1/RIP3)-dependent necroptosis. Importantly, autophagy flow was monitored by constructing the mRFP-GFP-LC3 plasmid, and it was found that curcumol cleared activated HSCs in a necroptosis manner that was dependent on autophagy. Our study suggested that the activation of necrosome formed by RIP1 and RIP3 depended on Atg5, and that autophagosomes were also necessary for curcumol-induced necroptosis. Furthermore, microscale thermophoresis and co-immunoprecipitation assay results proved that curcumol could target Sirt1 to regulate autophagy by reducing the acetylation level of Atg5. The HSCs-specific silencing of Sirt1 exacerbated CCl4 -induced liver fibrosis in mice. The deacetylation of Atg5 not only accelerated the accumulation of autophagosomes but also enhanced the interaction between Atg5 and RIP1/RIP3 to induce necroptosis. Overall, our study indicated that curcumol could activate Sirt1 to promote Atg5 deacetylation and enhanced its protein-protein interaction function, thereby inducing autophagy and promoting the necroptosis of HSCs to reduce liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Lysine , Animals , Autophagy , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Lysine/metabolism , Mice , Necroptosis , Sesquiterpenes , Sirtuin 1/metabolism
6.
Oxid Med Cell Longev ; 2021: 3456725, 2021.
Article in English | MEDLINE | ID: mdl-34925691

ABSTRACT

Relevant researches have recognized the vital role of inducing ferroptosis in the treatment of tumor. The latest findings indicate that PEBP1/15-LO can play an essential role in the process of cell death. However, its role in regulating ferroptosis in hepatocellular carcinoma (simplified by HCC) remains unclear. The previous research of our team has proved that DHA can induce ferroptosis of hepatic stellate cells. In this study, we found that DHA could also induce ferroptosis in HCC cells. Interestingly, DHA induced ferroptosis by promoting the formation of PEBP1/15-LO and promoting cell membrane lipid peroxidation. In addition, we also found that DHA had no obvious regulatory effect on 15-LO, but it could promote PEBP1 protein expression. Importantly, we discovered the upregulation of PEBP1 induced by DHA was related to the inhibition of its ubiquitination degradation. In vivo experiments have also obtained consistent results that DHA can inhibit tumor growth and affect the expression of ferroptosis markers in tumor tissues, which would be partially offset by interference with PEBP1.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Artemisinins/pharmacology , Carcinoma, Hepatocellular/drug therapy , Ferroptosis , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/drug therapy , Phosphatidylethanolamine Binding Protein/metabolism , Animals , Antimalarials/pharmacology , Apoptosis , Arachidonate 15-Lipoxygenase/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphatidylethanolamine Binding Protein/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Signal Transduct Target Ther ; 5(1): 280, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33273451

ABSTRACT

As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.


Subject(s)
Liver Diseases , Methionine/metabolism , Methionine/therapeutic use , Animals , Chronic Disease , Humans , Liver Diseases/diet therapy , Liver Diseases/metabolism , Liver Diseases/pathology , Methionine Adenosyltransferase/metabolism
8.
Pharmacol Res ; 161: 105218, 2020 11.
Article in English | MEDLINE | ID: mdl-33007418

ABSTRACT

Endoplasmic reticulum (ER) stress is easily observed in chronic liver disease, which often causes accumulation of unfolded or misfolded proteins in the ER, leading to unfolded protein response (UPR). Regulating protein degradation is an integral part of UPR to relieve ER stress. The major protein degradation system includes the ubiquitin-proteasome system (UPS) and autophagy. All three arms of UPR triggered in response to ER stress can regulate UPS and autophagy. Accumulated misfolded proteins could activate these arms, and then generate various transcription factors to regulate the expression of UPS-related and autophagy-related genes. The protein degradation process regulated by UPR has great significance in many chronic liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, liver fibrosis, and hepatocellular carcinoma(HCC). In most instances, the degradation of excessive proteins protects cells with ER stress survival from apoptosis. According to the specific functions of protein degradation in chronic liver disease, choosing to promote or inhibit this process is promising as a potential method for treating chronic liver disease.


Subject(s)
Endoplasmic Reticulum Stress , Liver Diseases/metabolism , Liver/metabolism , Proteostasis , Animals , Autophagy , Chronic Disease , Endoplasmic Reticulum Stress/drug effects , Humans , Liver/drug effects , Liver/pathology , Liver Diseases/drug therapy , Liver Diseases/pathology , Proteolysis , Proteostasis/drug effects , Unfolded Protein Response
9.
J Nanosci Nanotechnol ; 16(3): 2725-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455698

ABSTRACT

In this work thermo sensitivity was investigated with the bound rubber theory and thermoelasticity theory of the polymer-filler interface interaction between Polymethylvinylsiloxane (PMVS) and nanofillers (fumed and precipitated silica with the primary particle size of 10 nanometres). Bound rubber (the transition phase between PMVS and silica) content was measured by sol-gel analysis and swelling experiments. Results showed that the amount of bound rubber increases steadily with the increases of filler content. But the increasing rate suddenly decreased at certain silica content (between 40 and 50 phr of precipitated silica and between 30 and 40 phr of fumed silica, respectively), which was constant with the thermoelaticity experiment results. The temperature coefficients in low strain uniaxial extension are found to present sudden changing at the same silica content. This observation shows that thermo sensitivity is closely connected with the structure of polymer-filler interface.


Subject(s)
Nanocomposites , Polymers/chemistry , Polyvinyls/chemistry , Silicon Dioxide/chemistry , Siloxanes/chemistry , Microscopy, Atomic Force , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...