Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 44(22): e2300418, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625423

ABSTRACT

The dynamic behaviors of polyzwitterions, poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate) (PSBP), are investigated using dynamic light scattering, small angle X-ray scattering, and rheology.  The findings reveal two relaxation modes, including a fast and a slow mode, which  are observed in both solution state and gel-like state, with varying polyzwitterion concentration (CP ) and NaCl concentration (CNaCl ). As CP and CNaCl increasing, a slower slow mode and a faster fast mode are observed. The fast mode corresponds to the diffusion of chains, while the slow mode arises from chain aggregations. In solutions, the slow mode is dominated by the diffusion of chain aggregations. However, in the gel-like state, the "cage network" traps aggregations more densely, leading to their dynamic behavior being dominated by enhanced topological entanglements and ionic interactions. This difference highlights the unique nature of the slow relaxation mode between concentrated solution and gel-like state, arising from changes in the average distance between chain aggregations resulting from increased CP and CNaCl concentrations.


Subject(s)
Sodium Chloride , Dynamic Light Scattering , Diffusion , Rheology
2.
Adv Mater ; 35(1): e2207587, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36284475

ABSTRACT

With the strengthening capacity through harnessing multi-length-scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low-cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze-casting and compression-annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well-defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record-high ballistic energy absorption capability (i.e., 2.1 kJ m-1 ), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low-cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor-like protection circumstances.

3.
Carbohydr Polym ; 288: 119403, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450655

ABSTRACT

In this work, we investigated the dynamics of hydrogels from the polyelectrolyte complexation of sodium hyaluronate (HA) and chitosan under various temperature and salt concentration. Raising temperature and adding salt remarkably reduce the mechanical behavior of hydrogels. The stress relaxation of semi-flexible chain segments is accelerated at high temperature and salt concentration, which is controlled by thermally activated bond disassociation process. The flow activation energy determined from temperature-dependent dynamic light scattering decorrelation and rheological relaxation are in very good agreement. Our results suggest that the chain aggregations are physical crosslinked by surrounded semi-flexible chains, and their diffusion is highly hindered by the topological entanglements and ionic associations. The synergistic effect of aggregations diffusion and chain dynamics causes the slow macroscopic stress relaxation behavior of hydrogels before yield, independent of applied strain. Above yield, the amplitude of strain accelerates the stress relaxation, resulting in chain disentanglements and slipping.


Subject(s)
Chitosan , Hydrogels , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Polyelectrolytes/chemistry , Rheology
4.
ACS Appl Mater Interfaces ; 13(29): 34942-34953, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34270204

ABSTRACT

Hydrogel-based electronics have received growing attention because of their great flexibility and stretchability. However, the fabrication of conductive hydrogels with high stretchability, excellent toughness, outstanding sensitivity, and low-temperature stability still remains a great challenge. In this study, a type of conductive hydrogels consisting of a double network (DN) structure is synthesized. The dynamically cross-linked chitosan (CS) and the flexible polyacrylamide network doped with polyaniline constitute the DN through the hydrogen bonds between the hydroxyl, amide, and aniline groups. This type of hydrogels displays excellent mechanical performance, striking conductivity, and remarkable freezing tolerance. The flexible electronic sensors based on the double-network hydrogels demonstrate superior strain sensitivity and linear response on various deformations. Additionally, the good antifreezing property of the hydrogels allows the sensors to exhibit excellent performance at -20 °C.

5.
Adv Mater ; 33(11): e2006111, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33576145

ABSTRACT

Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.

6.
ACS Appl Mater Interfaces ; 11(40): 37139-37146, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31525861

ABSTRACT

Inspired by the toughening mechanism of double-network (DN) gels, tough hydrogel composites with a sandwich structure were fabricated from photoresponsive polymers. By copolymerization of hydrophilic monomers, 2-ureidoethyl methacrylate (UM), and photoresponsive hydrophobic monomers, (2-nitrobenzyloxycarbonylaminoethyl methacrylate (NBOC)) at high concentrations, physical hydrogels that are soft and highly stretchable are formed due to the hydrophobic associations of NBOC, serving as dynamic crosslinkers. By UV irradiation, the physical crosslinking switches into chemical crosslinking, and the soft physical hydrogels transform into rigid and less stretchable chemical hydrogels. By UV curing the surface layers of the physical hydrogels, we prepared hydrogel composites having a sandwiched structure with two rigid outer layers and a soft inner layer. The molecular-level continuous interfaces and matched swelling ratios between the layers ensure the macroscale hydrogel composites' high strength and toughness with a DN gel effect. The outer layers fracture preferentially at deformation, playing a role like the first network of a DN gel, while the inner layer maintains the integrity, playing a role resembling the second network. The evolution of the fracture morphology of the rigid layers gives useful insight into the internal fracture process of DN gels.

7.
J Mater Chem B ; 7(35): 5296-5305, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31432060

ABSTRACT

Polyelectrolyte complexation between oppositely charged polyelectrolytes forms coacervates in dilute solutions and thin films in concentrated solutions. It is difficult to obtain macroscopically uniform bulk polyelectrolyte complex (PEC) materials, since the two polymers form insoluble complexes quickly at the contact interface during mixing, resulting in heterogeneous aggregates. Here, we succeeded in preparing bulk PEC materials based on desalting-induced polyelectrolyte complexation via viscoelastic phase separation. With a high ionic strength aqueous medium, a homogeneous and concentrated solution containing oppositely charged polyelectrolytes is prepared. Desalting of the counter-ions and co-ions of the solution through semi-permeable membranes induces viscoelastic phase separation of the solution to form a physical hydrogel with open pore structure. Regulating the charge ratio of the two oppositely charged polymers results in significant changes in the porous morphology and mechanical properties. The charge-balanced PEC hydrogels show unique properties including high toughness and self-recovery due to the reversible ionic associations. The porous yet tough properties of bulk PEC hydrogels makes them potential candidates for applications such as cell scaffolds.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Polyelectrolytes/chemistry , Elasticity , Hydrogen-Ion Concentration , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...