Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 244(3): 424-437, 2024 03.
Article in English | MEDLINE | ID: mdl-37953410

ABSTRACT

Resorption within cortices of long bones removes excess mass and damaged tissue and increases during periods of reduced mechanical loading. Returning to high-intensity exercise may place bones at risk of failure due to increased porosity caused by bone resorption. We used point-projection X-ray microscopy images of bone slices from highly loaded (metacarpal, tibia) and minimally loaded (rib) bones from 12 racehorses, 6 that died during a period of high-intensity exercise and 6 that had a period of intense exercise followed by at least 35 days of rest prior to death, and measured intracortical canal cross-sectional area (Ca.Ar) and number (N.Ca) to infer remodelling activity across sites and exercise groups. Large canals that are the consequence of bone resorption (Ca.Ar >0.04 mm2 ) were 1.4× to 18.7× greater in number and area in the third metacarpal bone from rested than exercised animals (p = 0.005-0.008), but were similar in number and area in ribs from rested and exercised animals (p = 0.575-0.688). An intermediate relationship was present in the tibia, and when large canals and smaller canals that result from partial bony infilling (Ca.Ar >0.002 mm2 ) were considered together. The mechanostat may override targeted remodelling during periods of high mechanical load by enhancing bone formation, reducing resorption and suppressing turnover. Both systems may work synergistically in rest periods to remove excess and damaged tissue.


Subject(s)
Bone Remodeling , Bone Resorption , Animals , Tibia , Ribs , Osteogenesis
2.
Animals (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34679993

ABSTRACT

This study aimed to validate previously published computed tomography (CT) derived mathematical equations with the true skin to lumbosacral epidural distance (SLED) in dog cadavers. Phase 1: The lumbar region of 11 dog cadavers were scanned in sternal recumbency to determine the effect of cranial, neutral, and caudal pelvic limb positioning on the CT derived lumbosacral epidural distance (CLED). Phase 2: The epidural space was determined using contrast epidurography, and the SLED was analysed against the mathematical equations using a body condition score (BCS) and either the cadaveric occipital-coccygeal length (OCL) (Equation (1): = 7.3 + 0.05*OCL + 16.45*BCS) or the ilium wing distance (IWD) (Equation (2): = 3.5 + 0.56*IWD + 16.6*BCS). There were no differences detected between the pelvic limb positions and the CLED. Both equations demonstrated strong correlations (Equation (1): r = 0.7196; Equation (2): r = 0.7590) with the SLED. The level of agreement was greater for Equation (1) than with Equation (2) (concordance coefficient 0.6061 and 0.3752, respectively). Equation (1) also demonstrated a closer fit to the concordance line compared with Equation (2) (bias correction factor 0.8422 and 0.4960, respectively). Further studies in live anaesthetised dogs will help to determine the usefulness of the pre-procedural knowledge when performing lumbosacral epidurals.

3.
Animals (Basel) ; 11(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34680015

ABSTRACT

The study aimed to compare bupivacaine onset time when administered via epidural anaesthesia injecting both at the lumbosacral and sacrococcygeal spaces, spinal anaesthesia, and DPE in clinical dogs. A total of 41 dogs requiring neuraxial anaesthesia as part of their anaesthetic protocol were recruited. They were randomly allocated to receive an epidural injection in the sacrococcygeal space aided by the nerve stimulator (SCO), an epidural injection in the lumbosacral (LS), a subarachnoid injection (SPI), or a DPE. The onset of anaesthesia was assessed every 30 s after the injection by testing the presence of patellar ligament reflex. The number of attempts and time to perform the technique were also recorded. Data were analysed using a one-way ANOVA for trimmed means with post hoc Lincoln test and a Kaplan-Meier curve. The significance level was set at p < 0.05, and the results are presented in absolute values and median (range). There was no difference in the number of attempts required to complete the techniques between groups (p = 0.97). Epidural injections (LS and SCO) tended to be shorter than SPI and DPE techniques, but there was no statistically significant difference (p = 0.071). The time to the disappearance of patellar ligament reflex (Westphal's sign) in the SCO group was longer than in any other group. In conclusion, all techniques provided a rapid block of the patellar reflex. The SCO technique was the slowest in onset, while the other groups (SPI, DPE, and LS) were faster and almost indistinguishable.

4.
Vet Sci ; 7(4)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287250

ABSTRACT

The current clinical techniques for neuraxial needle placement in dogs are predominantly blind without prior knowledge of the depth required to reach the desired space. This study investigated the correlation and defined the relationship between easily obtainable external landmark variables in the dog; occipital-coccygeal length (OCL) and ilium wings distance (IWD), with the skin to epidural and intrathecal space distances using computed tomography (CT). The CT images of 86 dogs of different breeds were examined in this retrospective observational study. Images of dogs in sternal recumbency were optimized to the sagittal view. The distances between the skin and lumbosacral epidural space (LSE) and skin to sacrococcygeal space (SCE) were measured to the ligamentum flavum surrogate (LFS) line. The distance between the skin and the intrathecal space (ITS) was measured from the skin to the vertebral canal at the interlumbar (L5-L6) space. Measurements of the IWD and OCL were performed on dorsal and scout views, respectively. Linear regression equations and Pearson's correlation coefficients were calculated between variables. Data were reported as mean (standard deviation). Significance was set as alpha < 0.05. After exclusion of four dogs, 82 CT scans were included. The depths were LSE 45 (15) mm, SCE 23 (10) mm, and ITS 50 (15) mm. There was a moderate correlation between OCL with LSE (=14.2 + OCL * 0.05 (r = 0.59, p < 0.0001)), and a strong correlation with ITS (=11.4 + OCL * 0.07 (r = 0.76, p < 0.0001)), while a very weak correlation was found with SCE (=14.0 + OCL * 0.02 (r = 0.27, p < 0.0584)). Similarly, with IWD, there was a moderate correlation with LSE (=10.8 + IWD * 0.56 (r = 0.61, p < 0.0001)), and strong correlation with ITS (=9.2 + IWD * 0.67 (r = 0.75, p < 0.0001)), while a weak correlation was found with SCE (=11.2 + IWD * 0.2 (r = 0.32, p < 0.0033)). Mathematical formulae derived from the multiple regression showed that the body condition score (BCS) improved the relationship between IWD and OCL and the LSE, SCE and ITS, while the addition of body weight was associated with multicollinearity. Further studies are required to determine the accuracy of the algorithms to demonstrate their ability for prediction in a clinical setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...