Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772066

ABSTRACT

To reveal the microscopic mechanism of synergetic thermal-electrical degradation during a partial discharge process in epoxy insulation materials, the decomposition of crosslinked epoxy resin is investigated using reactive molecular dynamics simulations under high electric field and thermal degradation conditions. Bond-boost acceleration method is employed in reactive molecular dynamics simulations to successfully establish epoxy polymer models with a crosslink degree of 93%. Active molecular species derived from electrical partial discharges are considered in the current work. Small molecule products and decomposition temperature in the degradation process under an electric field are calculated to elucidate the effect of nitric acid and ozone molecules, being the active products generated by electrical partial discharges, on the synergetic thermal-electrical degradation of epoxy resin. Both nitric acid and ozone exacerbate thermal impact decomposition of crosslinked epoxy polymer by decreasing initial decomposition temperature from 1050 K to 940 K and 820 K, respectively. It is found that these active products can oxidize hydroxyl groups and carbon-nitrogen bridge bonds in epoxy molecular chains, leading to the aggravation of epoxy resin decomposition, as manifested by the significant increase in the decomposed molecular products. In contrast, thermal degradation of the epoxy resin without the active species is not expedited by increasing electric field. These strongly oxidative molecules are easily reduced to negative ions and able to obtain kinetic energies from electric field, which result in chemical corrosion and local temperature increase to accelerate decomposition of epoxy insulation materials.

2.
Polymers (Basel) ; 15(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36616579

ABSTRACT

Polar group-modified crosslinked polyethylene (XLPE) materials are developed with a peroxide thermochemical method of individually grafting chloroacetic acid allyl ester (CAAE) and maleic anhydride (MAH) to polyethylene molecular-chains, which are dedicated to ameliorating dielectric characteristics through charge-trapping mechanism. By free radical addition reactions, the CAAE and MAH molecules are successfully grafted to polyethylene molecular chains of XLPE in crosslinking process, as verified by infrared spectroscopy molecular characterizations. Dielectric spectra, electric conductance, and dielectric breakdown strength are tested to evaluate the improved dielectric performances. Charge trap characteristics are investigated by analyzing thermal stimulation depolarization currents in combination with first-principles electronic-structure calculations to reveal the polar-group introduced mechanisms of contributing dipole dielectric polarization, impeding electric conduction, and promoting electrical breakdown field. The grafted polar-group molecules, especially for MAH, can introduce deep-level charge traps in XLPE materials to effectively restrict charge injections and hinder charge carrier transports, which accounts for the significant improvements in electric resistance and dielectric breakdown strength.

3.
Mol Med Rep ; 27(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36453210

ABSTRACT

Following the publication of the above article, an interested reader drew to the authors' attention that Fig. 4A on p. 921, showing the results from cell migration assay experiments, featured a pair of duplicated data panels. After having consulted their original data, the authors have realized that Fig. 3A on the same page, showing the fluorometric images of apoptotic cells, also contained a pair of duplicated data panels. These errors in the presentation of these figures arose inadvertently as a consequence of selecting the wrong images for the 'RA NC' data panel in Fig. 3A and the NOR-FLS data panel in Fig. 5E. The revised versions of Figs. 3 and 4 are shown on the next two pages. All the authors approve of the publication of this corrigendum, and the authors are grateful to the Editor of Molecular Medicine Reports for granting them the opportunity to publish this. The authors regret their oversight in allowing these errors to be included in the paper, and also apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 11: 917­923, 2015; DOI: 10.3892/mmr.2014.2770].

4.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365621

ABSTRACT

In order to improve electrical matching between ethylene-propylene-diene misch-polymere (EPDM) reinforce insulation and crosslinked polyethylene (XLPE) main insulation in direct current (DC) cable accessories, the glyceryl monooleate (GMO) organic compound composed of several polar-groups and one long carbon chain is employed for chemical graft modification on EPDM to ameliorate DC electrical performances. Charge trap characteristics are analyzed by testing thermal stimulation current (TSC) and verified by calculating first-principles electronic properties to elucidate the GMO-graft-modified charge trapping mechanism accounting for DC electric conductance and dielectric breakdown. The grafted GMO molecules introduce substantial shallow charge traps that lead to nonlinear profiles of electric conduction versus electric field and cause hopping transports of percolation conductance. Electric conductance of EPDM is significantly improved by GMO graft for electrical matching with XLPE, while a high level of dielectric breakdown strength is retained sufficiently for reinforce insulation in cable accessories. Shallow charge traps introduced by GMO graft are capable of capturing charge carriers to form homocharge layers near electrodes which can scatter the transporting charge carriers and exclude further charge injections, thus to mitigate the dielectric breakdown strength reduction caused by electric conductivity improvement. Electric field finite-element simulations demonstrate that the electric field in DC cable terminals can be evidently homogenized by using GMO-grafted EPDM as reinforce insulation.

5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142338

ABSTRACT

Novel radar-wave absorption nanocomposites are developed by filling the nanoscaled ferrites of strontium ferroxide (SrFe12O19) and carbonyl iron (CIP) individually into the highly flexible liquid silicone rubber (LSR) considered as dielectric matrix. Nanofiller dispersivities in SrFe12O19/LSR and CIP/LSR nanocomposites are characterized by scanning electronic microscopy, and the mechanical properties, electric conductivity, and DC dielectric-breakdown strength are tested to evaluate electrical insulation performances. Radar-wave absorption performances of SrFe12O19/LSR and CIP/LSR nanocomposites are investigated by measuring electromagnetic response characteristics and radar-wave reflectivity, indicating the high radar-wave absorption is dominantly derived from magnetic losses. Compared with pure LSR, the SrFe12O19/LSR and CIP/LSR nanocomposites represent acceptable reductions in mechanical tensile and dielectric-breakdown strengths, while rendering a substantial nonlinearity of electric conductivity under high electric fields. SrFe12O19/LSR nanocomposites provide high radar-wave absorption in the frequency band of 11~18 GHz, achieving a minimum reflection loss of -33 dB at 11 GHz with an effective absorption bandwidth of 10 GHz. In comparison, CIP/LSR nanocomposites realize a minimum reflection loss of -22 dB at 7 GHz and a remarkably larger effective absorption bandwidth of 3.9 GHz in the lower frequency range of 2~8 GHz. Radar-wave transmissions through SrFe12O19/LSR and CIP/LSR nanocomposites in single- and double-layered structures are analyzed with CST electromagnetic-field simulation software to calculate radar reflectivity for various absorbing-layer thicknesses. Dual-layer absorbing structures are modeled by specifying SrFe12O19/LSR and CIP/LSR nanocomposites, respectively, as match and loss layers, which are predicted to acquire a significant improvement in radar-wave absorption when the thicknesses of match and loss layers approach 1.75 mm and 0.25 mm, respectively.


Subject(s)
Radar , Silicone Elastomers , Electricity , Iron/chemistry , Strontium
6.
Int J Mol Sci ; 23(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36012715

ABSTRACT

In order to restrain electric-stress impacts of water micro-droplets in insulation defects under alternating current (AC) electric fields in crosslinked polyethylene (XLPE) material, the present study represents chemical graft modifications of introducing chloroacetic acid allyl ester (CAAE) and maleic anhydride (MAH) individually as two specific polar-group molecules into XLPE material with peroxide melting approach. The accelerated water-tree aging experiments are implemented by means of a water-blade electrode to measure the improved water resistance and the affording mechanism of the graft-modified XLPE material in reference to benchmark XLPE. Melting−crystallization process, dynamic viscoelasticity and stress-strain characteristics are tested utilizing differential scanning calorimeter (DSC), dynamic thermomechanical analyzer (DMA) and electronic tension machine, respectively. Water-tree morphology is observed for various aging times to evaluate dimension characteristics in water-tree developing processes. Monte Carlo molecular simulations are performed to calculate free-energy, thermodynamic phase diagram, interaction parameter and mixing energy of binary mixing systems consisting of CAAE or MAH and water molecules to evaluate their thermodynamic miscibility. Water-tree experiments indicate that water-tree resistance to XLPE can be significantly improved by grafting CAAE or MAH, as indicated by reducing the characteristic length of water-trees from 120 to 80 µm. Heterogeneous nucleation centers of polyethylene crystallization are rendered by the grafted polar-group molecules to ameliorate crystalline microstructures, as manifested by crystallinity increment from 33.5 to 36.2, which favors improving water-tree resistance and mechanical performances. The highly hydrophilic nature of CAAE can evidently inhibit water molecules from aggregating into water micro-droplets in amorphous regions between crystal lamellae, thus acquiring a significant promotion in water-tree resistance of CAAE-modified XLPE. In contrast, the grafted MAH molecules can enhance van der Waals forces between polyethylene molecular chains in amorphous regions much greater than the grafted CAAE and simultaneously act as more efficient crystallization nucleation centers to ameliorate crystalline microstructures of XLPE, resulting in a greater improvement (relaxation peak magnitude increases by >10%) of mechanical toughness in amorphous phase, which primarily accounts for water-tree resistance promotion.


Subject(s)
Hip Prosthesis , Polyethylene , Maleic Anhydrides , Polyethylene/chemistry , Prosthesis Failure , Water
7.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35808048

ABSTRACT

Microscopic characterization of magnetic nanomaterials by magnetic probe interacting with ferromagnetic nano-domains is proposed according to finite-element magnetostatic field simulations. Magnetic forces detected by microscopic probe are systematically investigated on magnetic moment orientation, magnetization intensity and geometry of ferromagnetic nano-domains, and especially on permanent magnetic coating thickness and tilting angle of probe, to provide a theoretical basis for developing magnetic force microscopy. Magnetic force direction is primarily determined by magnetic moment orientation of nanosample, and the tip curvature dominates magnetic force intensity that is meanwhile positively correlated with nanosample magnetization and probe magnetic coating thickness. Nanosample should reach a critical thickness determined by its transverse diameter to be capable of accurately detecting the magnetic properties of ferromagnetic nanomaterials. Magnetic force signal relies on probe inclination when the sample magnetic moment is along probe tilting direction, which, however, is not disturbed by probe inclination when sample magnetic moment is perpendicular to probe tilting plane. Within the geometry of satisfying a critical size requirement, the magnetic force can successfully image the ferromagnetic nano-domains by characterizing their sizes and magnetic moment orientations. The present study is expected to provide effective analyzing schemes and theoretical evidences for magnetic force microscopy of characterizing magnetic structures in ferromagnetic nanomaterials.

8.
Polymers (Basel) ; 14(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35808771

ABSTRACT

To achieve a preferable compatibility between liquid silicone rubber (LSR) and cable main insulation in a cable accessory, we developed SiC/LSR nanocomposites with a significantly higher conductivity nonlinearity than pure LSR, whilst representing a notable improvement in space charge characteristics. Space charge distributions in polarization/depolarization processes and surface potentials of SiC/LSR composites are analyzed to elucidate the percolation conductance and charge trapping mechanisms accounting for nonlinear conductivity and space charge suppression. It is verified that SiC/LSR composites with SiC content higher than 10 wt% represent an evident nonlinearity of electric conductivity as a function of the electric field strength. Space charge accumulations can be inhibited by filling SiC nanoparticles into LSR, as illustrated in both dielectric polarization and depolarization processes. Energy level and density of shallow traps increase significantly with SiC content, which accounts for expediting carrier hopping transport and surface charge decay. Finite-element multiphysics simulations demonstrate that nonlinear conductivity acquired by 20 wt% SiC/LSR nanocomposite could efficiently homogenize an electric field distributed in high-voltage direct current (HVDC) cable joints. Nonlinear conductivities and space charge characteristics of SiC/LSR composites discussed in this paper suggest a feasible modification strategy to improve insulation performances of direct current (DC) cable accessories.

9.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745305

ABSTRACT

As a paradigm of exploiting electronic-structure engineering on semiconductor superlattices to develop advanced dielectric film materials with high electrical energy storage, the n*AlN/n*ScN superlattices are systematically investigated by first-principles calculations of structural stability, band structure and dielectric polarizability. Electrical energy storage density is evaluated by dielectric permittivity under a high electric field approaching the uppermost critical value determined by a superlattice band gap, which hinges on the constituent layer thickness and crystallographic orientation of superlattices. It is demonstrated that the constituent layer thickness as indicated by larger n and superlattice orientations as in (111) crystallographic plane can be effectively exploited to modify dielectric permittivity and band gap, respectively, and thus promote energy density of electric capacitors. Simultaneously increasing the thicknesses of individual constituent layers maintains adequate band gaps while slightly reducing dielectric polarizability from electronic localization of valence band-edge in ScN constituent layers. The AlN/ScN superlattices oriented in the wurtzite (111) plane acquire higher dielectric energy density due to the significant improvement in electronic band gaps. The present study renders a framework for modifying the band gap and dielectric properties to acquire high energy storage in semiconductor superlattices.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35159727

ABSTRACT

Phonon and spintronic structures of monolayered Janus vanadium-dichalcogenide compounds are calculated by the first-principles schemes of pseudopotential plane-wave based on spin-density functional theory, to study dynamic structural stability and electronic spin-splitting due to spin-orbit coupling (SOC) and spin polarization. Geometry optimizations and phonon-dispersion spectra demonstrate that vanadium-dichalcogenide monolayers possess a high enough cohesive energy, while VSTe and VTe2 monolayers specially possess a relatively higher in-plane elastic coefficient and represent a dynamically stable structure without any virtual frequency of atomic vibration modes. Atomic population charges and electron density differences demonstrate that V-Te covalent bonds cause a high electrostatic potential gradient perpendicular to layer-plane internal VSTe and VSeTe monolayers. The spin polarization of vanadium 3d-orbital component causes a pronounced energetic spin-splitting of electronic-states near the Fermi level, leading to a semimetal band-structure and increasing optoelectronic band-gap. Rashba spin-splitting around G point in Brillouin zone can be specifically introduced into Janus VSeTe monolayer by strong chalcogen SOC together with a high intrinsic electric field (potential gradient) perpendicular to layer-plane. The vertical splitting of band-edge at K point can be enhanced by a stronger SOC of the chalcogen elements with larger atom numbers for constituting Janus V-dichalcogenide monolayers. The collinear spin-polarization causes the band-edge spin-splitting across Fermi level and leads to a ferrimagnetic order in layer-plane between V and chalcogen cations with higher α and ß spin densities, respectively, which accounts for a large net spin as manifested more apparently in VSeTe monolayer. In a conclusion for Janus vanadium-dichalcogenide monolayers, the significant Rashba splitting with an enhanced K-point vertical splitting can be effectively introduced by a strong SOC in VSeTe monolayer, which simultaneously represents the largest net spin of 1.64 (ћ/2) per unit cell. The present study provides a normative scheme for first-principles electronic structure calculations of spintronic low-dimensional materials, and suggests a prospective extension of two-dimensional compound materials applied to spintronics.

11.
Materials (Basel) ; 14(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802110

ABSTRACT

Employing a novel semiconductor electrode in comparison with the traditional semiconductor electrode made of polyethylene/ethylene-vinyl-acetate copolymer/carbon-black (PE/EVA/CB) composite, characteristic charge carriers are injected into polyethylene terephthalate (PET) as a polymer dielectric paradigm, which will be captured by specific deep traps of electrons and holes. Combined with thermal stimulation current (TSC) experiments and first-principles electronic-state calculations, the injected charges from the novel electrode are characterized, and the corresponding dielectric behavior is elucidated through DC conductance, electrical breakdown and dielectric spectrum tests. TSC experiments with novel and traditional semiconductor electrodes can distinguish the trapping characteristics between hole and electron traps in polymer dielectrics. The observable discrepancy in space charge-limited conductance and the stable dielectric breakdown strength demonstrate that the electron injection into PET film specimen is restricted by using the novel semiconductor electrode. Attributed to the favorable suppression on the inevitable electron injections from metal electrodes, adopting novel i-electrode can avoid the evident abatement of dipole orientation polarization caused by space charge clamp, but will engender the accessional high-frequency dielectric loss from dielectric relaxations of interface charges at i-electrodes.

12.
Materials (Basel) ; 14(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805708

ABSTRACT

Trimethylolpropane triacrylate (TMPTA) as a photoactive crosslinker is grafted onto hydrophobic nanosilica surface through click chemical reactions of mercapto double bonds to prepare the functionalized nanoparticles (TMPTA-s-SiO2), which are used to develop TMPTA-s-SiO2/XLPE nanocomposites with improvements in mechanical strength and electrical resistance. The expedited aging experiments of water-tree growth are performed with a water-knife electrode and analyzed in consistence with the mechanical performances evaluated by means of dynamic thermo-mechanical analysis (DMA) and tensile stress-strain characteristics. Due to the dense cross-linking network of polyethylene molecular chains formed on the TMPTA-modified surfaces of SiO2 nanofillers, TMPTA-s-SiO2 nanofillers are chemically introduced into XLPE matrix to acquire higher crosslinking degree and connection strength in the amorphous regions between polyethylene lamellae, accounting for the higher water-tree resistance and ameliorated mechanical performances, compared with pure XLPE and neat-SiO2/XLPE nanocomposite. Hydrophilic TMPTA molecules grafted on the nano-SiO2 surface can inhibit the condensation of water molecules into water micro-beads at insulation defects, thus attenuating the damage of water micro-beads to polyethylene configurations under alternating electric fields and thus restricting water-tree growth in amorphous regions. The intensified interfaces between TMPTA-s-SiO2 nanofillers and XLPE matrix limit the segment motions of polyethylene molecular chains and resist the diffusion of water molecules in XLPE amorphous regions, which further contributes to the excellent water-tree resistance of TMPTA-s-SiO2/XLPE nanocomposites.

13.
Molecules ; 25(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878192

ABSTRACT

Space charge characteristics of cross-linked polyethylene (XLPE) at elevated temperatures have been evidently improved by the graft modifications with ultraviolet (UV) initiation technique, which can be efficiently utilized in industrial cable manufactures. Maleic anhydride (MAH) of representative cyclic anhydride has been successfully grafted onto polyethylene molecules through UV irradiation process. Thermal stimulation currents and space charge characteristics at the elevated temperatures are coordinately analyzed to elucidate the trapping behavior of blocking charge injection and impeding carrier transport which is caused by grafting MAH. It is also verified from the first-principles calculations that the bound states as charge carrier traps can be introduced by grafting MAH onto polyethylene molecules. Compared with pure XLPE, the remarkably suppressed space charge accumulations at high temperatures have been achieved in XLPE-g-MAH. The polar groups on the grafted MAH can provide deep traps in XLPE-g-MAH, which will increase charge injection barrier by forming a charged layer of Coulomb-potential screening near electrodes and simultaneously reduce the electrical mobility of charge carriers by trap-carrier scattering, resulting in an appreciable suppression of space charge accumulations inside material. The exact consistence of experimental results with the quantum mechanics calculations demonstrates a promising routine for the modification strategy of grafting polar molecules with UV initiation technique in the development of high-voltage DC cable materials.


Subject(s)
Maleic Anhydrides/chemistry , Polyethylene/chemistry , Temperature , Ultraviolet Rays , Models, Molecular , Molecular Conformation , Spectroscopy, Fourier Transform Infrared
14.
Molecules ; 25(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927806

ABSTRACT

The water-resistant characteristics of ultraviolet crosslinked polyethylene (UV-XLPE) are investigated specially for the dependence on the hydrophilicities of auxiliary crosslinkers, which is significant to develop high-voltage insulating cable materials. As auxiliary crosslinking agents of polyethylene, triallyl isocyanurate (TAIC), trimethylolpropane trimethacrylate (TMPTMA), and N,N'-m-phenylenedimaleimide (HAV2) are individually adopted to prepared XLPE materials with the UV-initiation crosslinking technique, for the study of water-tree resistance through the accelerating aging experiments with water blade electrode. The stress-strain characteristics and dynamic viscoelastic properties of UV-XLPE are tested by the electronic tension machine and dynamic thermomechanical analyzer. Monte Carlo molecular simulation is used to calculate the interaction parameters and mixing energy of crosslinker/water binary systems to analyze the compatibility between water and crosslinker molecules. Water-tree experiments verify that XLPE-TAIC represents the highest ability to inhibit the growth of water-trees, while XLPE-HAV2 shows the lowest resistance to water-trees. The stress-strain and viscoelastic properties show that the concentration of molecular chains connecting the adjacent lamellae in amorphous phase of XLPE-HAV2 is significantly higher than that of XLPE-TAIC and XLPE-TMPTMA. The molecular simulation results demonstrate that TAIC/water and TMPTMA/water binary systems possess a higher hydrophilicity than that of HAV2/water, as manifested by their lower interaction parameters and mixing free energies. The auxiliary crosslinkers can not only increase the molecular density of amorphous polyethylene between lamellae to inhibit water-tree growth, but also prevent water molecules at insulation defects from agglomerating into micro-water beads by increasing the hydrophilicity of auxiliary crosslinkers, which will evidently reduce the damage of micro-water beads on the amorphous phase in UV-XLPE. The better compatibility of TAIC and water molecules is the dominant reason accounting for the excellent water resistance of XLPE-TAIC.


Subject(s)
Cross-Linking Reagents/chemistry , Polyethylene/chemistry , Trees , Ultraviolet Rays , Water , Algorithms , Hydrophobic and Hydrophilic Interactions , Models, Theoretical , Molecular Structure , Monte Carlo Method
15.
Molecules ; 25(16)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806568

ABSTRACT

Water-tree resistances of styrene block copolymer/polypropylene (SEBS/PP) composites are investigated by characterizing crystallization structures in correlation with the dynamic mechanical properties to elucidate the micro-structure mechanism of improving insulation performances, in which the accelerated aging experiments of water trees are performed with water-knife electrodes. The water-tree morphology in spherulites, melt-crystallization characteristics and lamella structures of the composite materials are observed and analyzed by polarizing microscopy (PLM), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively. Dynamic relaxation and stress-strain characteristics are specifically studied by means of a dynamic thermomechanical analyzer (DMA) and electronic tension machine, respectively. No water-tree aging occurs in both the highly crystalline PP and the noncrystalline SEBS elastomer, while the water trees arising in SEBS/PP composites still has a significantly lower size than that in low-density polyethylene (LDPE). Compared with LDPE, the PP matrix of the SEBS/PP composite represent a higher crystallinity with a larger crystallization size in consistence with its higher mechanical strength and lower dynamic relaxation loss. SEBS molecules agglomerate as a "island" phase, and PP molecules crystallize into thin and short lamellae in composites, leading to the blurred spherulite boundary and the appreciable slips between lamellae under external force. The high crystallinity of the PP matrix and the strong resistance to slips between lamellae in the SEBS/PP composite essentially account for the remarkable inhibition on water-tree growth.


Subject(s)
Polypropylenes/chemistry , Polystyrenes/chemistry , Water/chemistry , Crystallization
16.
Molecules ; 25(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825451

ABSTRACT

In order to inhibit the outward-migrations of photo-initiator molecules in the ultraviolet-initiated crosslinking process and simultaneously improve the crosslinking degree and dielectric properties of crosslinked polyethylene (XLPE) materials, we have specifically developed surface-modified-SiO2/XLPE nanocomposites with the silica nanofillers that have been functionalized through chemical surface modifications. With the sulfur-containing silanes and 3-mercaptopropyl trimethoxy silane (MPTMS), the functional monomers of auxiliary crosslinker triallyl isocyanurate (TAIC) have been successfully grafted on the silica surface through thiol-ene click chemistry reactions. The grafted functional groups are verified by molecular characterizations of Fourier transform infrared spectra and nuclear magnetic resonance hydrogen spectra. Scanning electronic microscopy (SEM) indicates that the functionalized silica nanoparticles have been filled into polyethylene matrix with remarkably increased dispersivity compared with the neat silica nanoparticles. Under ultraviolet (UV) irradiation, the high efficient crosslinking reactions of polyethylene molecules are facilitated by the auxiliary crosslinkers that have been grafted onto the surfaces of silica nanofillers in polyethylene matrix. With the UV-initiated crosslinking technique, the crosslinking degree, insulation performance, and space charge characteristics of SiO2/XLPE nanocomposites are investigated in comparison with the XLPE material. Due to the combined effects of the high dispersion of nanofillers and the polar-groups of TAIC grafted on the surfaces of SiO2 nanofillers, the functionlized-SiO2/XLPE nanocomposite with an appropriate filling content represents the most preferable crosslinking degree with multiple improvements in the space charge characteristics and direct current dielectric breakdown strength. Simultaneously employing nanodielectric technology and functional-group surface modification, this study promises a modification strategy for developing XLPE nanocomposites with high mechanical and dielectric performances.


Subject(s)
Nanocomposites/chemistry , Polyethylene/chemistry , Silicon Dioxide/chemistry , Ultraviolet Rays , Click Chemistry
17.
Molecules ; 25(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650504

ABSTRACT

In order to improve the mechanical and dielectric properties of radome cyanate, a synergistic reinforcement method is employed to develop a resin-based ternary-composite with high heat-resistance and preferable radar-band transmission, which is expected to be applied to fabricate radomes capable of resisting high temperature and strong electric field. According to copolymerization characteristics and self-curing mechanism, epoxy resin (EP) and bismaleimide (BMI) are employed as reinforcements mixed into a cyanate ester (CE) matrix to prepare CE/BMI/EP composites of a heat-resistant radome material by high-temperature viscous-flow blending methods under the catalysis of aluminum acetylpyruvate. The crystallization temperature, transition heat, and reaction rate of cured polymers were tested to analyze heat-resistance characteristics and evaluate material synthesis processes. Scanning electron microscopy was used to characterize the micro-morphology of tensile fracture, which was combined with the tensile strength test and dynamic thermomechanical analysis to investigate the composite modifications on tenacity and rigidity. Weibull statistics were performed to analyze the experimental results of the dielectric breakdown field, and the dielectric-polarization and wave-transmission performances were investigated according to alternative current dielectric spectra. Compared with the pure CE and the CE composites individually reinforced by EP or BMI, the CE/BMI/EP composite acquires the most significant amelioration in both the mechanical and electrical insulation performances as indicated by the breaking elongation and dielectric breakdown strength being simultaneously improved by 40%, which are consistently manifested by the obviously increased transverse lines uniformly distributed on the fracture cross-section. Furthermore, the glass-transition temperature of CE/BMI/EP composite reaches the highest values of nearly 300 °C, with the relative dielectric constant and dielectric loss being mostly reduced to less than 3.2 and 0.01, respectively. The experimental results demonstrate that the CE/BMI/EP composite is a highly-qualified wave-transmission material with preferences in mechanical, thermostability, and electrical insulation performances, suggesting its prospective applications in low-frequency transmittance radomes.


Subject(s)
Cyanates/chemistry , Epoxy Resins/chemistry , Materials Testing , Hot Temperature , Surface Properties
18.
Polymers (Basel) ; 12(2)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059347

ABSTRACT

The ultraviolet (UV) irradiation crosslinking reactions of polyethylene and the electronic properties of photo-initiators and reaction products are theoretically investigated by the first-principles calculations. The crosslinked polyethylene (XLPE) materials are prepared in experiments that employ the UV-initiated crosslinking technique with different photon-initiation systems. Infrared spectrum and the alternating current dielectric breakdown strength of UV-initiated XLPE are tested to explore the effect of reaction products on the breakdown characteristics in combination with the electron structure calculations. The theoretical calculations indicate that the 4-hydroxybenzophenone laurate, which is compatible with polyethylene, can effectively initiate crosslinking reactions of polyethylene molecules under UV photon excitation and will produce reaction by-products from carbonyl radicals; as a macromolecular auxiliary crosslinker, the monomer or homopolymer of dioleyl-2,2',4,4'-tetraallyl isocyanurate can form chemical connections with multiple polyethylene molecules acting as a crosslinking node in a photon-initiated reaction process. The carbonyl, hydroxyl, or ester groups of reaction by-products are capable of capturing hot electrons to prevent polyethylene molecules from impact ionization, and thus will increase the breakdown electric field. The macromolecular auxiliary crosslinker and the macromolecular photon initiator as well as its reaction by-product can convert the energy of their captured high-energy electrons into heat, which can act as a voltage stabilizer. The molecule characterization of infrared spectra demonstrates that the characteristic absorption peaks of the carbonyl in the macromolecular photon initiator and the allyl in the macromolecular auxiliary crosslinking agent are gradually decreasing in intensity as the crosslinking reaction proceeds, which is consistent with the conclusion from theoretical calculations. Compared with the small molecular photon-initiation system generally used in the photon-initiated crosslinking process, the higher dielectric breakdown field of XLPE being prepared by utilizing a macromolecular photon-initiation system is in good agreement with the calculation results of electronic affinity and ionization potential. The consistent results of the experiments and first-principles calculations elucidate the fundamental mechanism of the UV-initiation crosslinking technique and suggest a prospective routine to improve the insulation strength for developing high-voltage XLPE insulating materials.

19.
Polymers (Basel) ; 12(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906364

ABSTRACT

Direct current (DC) electrical performances of crosslinked polyethylene (XLPE) have been evidently improved by developing graft modification technique with ultraviolet (UV) photon-initiation. Maleic anhydride (MAH) molecules with characteristic cyclic anhydride were successfully grafted to polyethylene molecules under UV irradiation, which can be efficiently realized in industrial cable production. The complying laws of electrical current varying with electric field and the Weibull statistics of dielectric breakdown strength at altered temperature for cable operation were analyzed to study the underlying mechanism of improving electrical insulation performances. Compared with pure XLPE, the appreciably decreased electrical conductivity and enhanced breakdown strength were achieved in XLPE-graft-MAH. The critical electric fields of the electrical conduction altering from ohm conductance to trap-limited mechanism significantly decrease with the increased testing temperature, which, however, can be remarkably raised by grafting MAH. At elevated temperatures, the dominant carrier transport mechanism of pure XLPE alters from Poole-Frenkel effect to Schottky injection, while and XLPE-graft-MAH materials persist in the electrical conductance dominated by Poole-Frenkel effect. The polar group of grafted MAH renders deep traps for charge carriers in XLPE-graft-MAH, and accordingly elevate the charge injection barrier and reduce charge mobility, resulting in the suppression of DC electrical conductance and the remarkable amelioration of insulation strength. The well agreement of experimental results with the quantum mechanics calculations suggests a prospective strategy of UV initiation for polar-molecule-grafting modification in the development of high-voltage DC cable materials.

20.
Sensors (Basel) ; 19(24)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817944

ABSTRACT

Finite element simulations for detecting the dielectric permittivity of planar nanoscale dielectrics by electrostatic probe are performed to explore the microprobe technology of characterizing nanomaterials. The electrostatic force produced by the polarization of nanoscale dielectrics is analyzed by a capacitance gradient between the probe and nano-sample in an electrostatic detection system, in which sample thickness is varied in the range of 1 nm-10 µm, the width (diameter) encompasses from 100 nm to 10 µm, the tilt angle of probe alters between 0° and 20°, and the relative dielectric constant covers 2-1000 to represent a majority of dielectric materials. For dielectric thin films with infinite lateral dimension, the critical diameter is determined, not only by the geometric shape and tilt angle of detecting probe, but also by the thickness of the tested nanofilm. Meanwhile, for the thickness greater than 100 nm, the critical diameter is almost independent on the probe geometry while being primarily dominated by the thickness and dielectric permittivity of nanomaterials, which approximately complies a variation as exponential functions. For nanofilms with a plane size which can be regarded as infinite, a pertaining analytical formalism is established and verified for the film thickness in an ultrathin limit of 10-100 nm, with the probe axis being perpendicular and tilt to film plane, respectively. The present research suggests a general testing scheme for characterizing flat, nanoscale, dielectric materials on metal substrates by means of electrostatic microscopy, which can realize an accurate quantitative analysis of dielectric permittivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...