Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38273184

ABSTRACT

The most popular vaccine adjuvants are aluminum ones, which have significantly reduced the incidence and mortality of many diseases. However, aluminum-adjuvanted vaccines are constrained by their limited capacity to elicit cellular and mucosal immune responses, thus constraining their broader utilization. Biogenic selenium nanoparticles are a low-cost, environmentally friendly, low-toxicity, and highly bioactive form of selenium supplementation. Here, we purified selenium nanoparticles synthesized by Levilactobacillus brevis 23017 (L-SeNP) and characterized them using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the L-SeNP has a particle size ranging from 30 to 200 nm and is coated with proteins and polysaccharides. Subsequently, we assessed the immune-enhancing properties of L-SeNP in combination with an adjuvant-inactivated Clostridium perfringens type A vaccine using a mouse model. The findings demonstrate that L-SeNP can elevate the IgG and SIgA titers in immunized mice and modulate the Th1/Th2 immune response, thereby enhancing the protective effect of aluminum-adjuvanted vaccines. Furthermore, we observed that L-SeNP increases selenoprotein expression and regulates oxidative stress in immunized mice, which may be how L-SeNP regulates immunity. In conclusion, L-SeNP has the potential to augment the immune response of aluminum adjuvant vaccines and compensate for their limitations in eliciting Th1 and mucosal immune responses.

2.
Front Immunol ; 14: 1116223, 2023.
Article in English | MEDLINE | ID: mdl-36793732

ABSTRACT

Nano selenium-enriched probiotics have been identified to improve immune responses, such as alleviating inflammation, antioxidant function, treatment of tumors, anticancer activity, and regulating intestinal flora. However, so far, there is little information on improving the immune effect of the vaccine. Here, we prepared nano selenium-enriched Levilactobacillus brevis 23017 (SeL) and heat-inactivated nano selenium-enriched L. brevis 23017 (HiSeL) and evaluated their immune enhancing functions on the alum-adjuvanted, inactivated Clostridium perfringens type A vaccine in mouse and rabbit models, respectively. We found that SeL enhanced immune responses of the vaccine by inducing a more rapid antibody production, eliciting higher immunoglobulin G (IgG) antibody titers, improving secretory immunoglobulin A (SIgA) antibody level and cellular immune response, and regulating Th1/Th2 immune response, thus helping to induce better protective efficacy after challenge. Moreover, we confirmed that the immunoenhancement effects are related to regulating oxidative stress, cytokine secretion, and selenoprotein expression. Meanwhile, similar effects were observed in HiSeL. In addition, they show enhanced humoral immune response at 1/2 and 1/4 standard vaccine doses, which confirms their prominent immune enhancement effect. Finally, the effect of improving vaccine immune responses was further confirmed in rabbits, which shows that SeL stimulates the production of IgG antibodies, generates α toxin-neutralizing antibodies rapidly, and reduces the pathological damage to intestine tissue. Our study demonstrates that nano selenium-enriched probiotics improve the immune effect of the alum adjuvants vaccine and highlight its potential usage in remedying the disadvantages of alum adjuvants.


Subject(s)
Probiotics , Selenium , Animals , Mice , Rabbits , Immunity, Mucosal , Adjuvants, Immunologic/pharmacology , Lactobacillus , Selenium/pharmacology , Antigens , Immunoglobulin G , Probiotics/pharmacology
3.
Probiotics Antimicrob Proteins ; 14(5): 830-844, 2022 10.
Article in English | MEDLINE | ID: mdl-35665480

ABSTRACT

Although the use of the probiotic bacterium Lactobacillus for the treatment and prevention of diseases caused by various pathogenic bacteria has received increasing attention in recent years, its mechanism remains incompletely understood. Levilactobacillus brevis 23017 is a select probiotic strain that can regulate the immunity of host animals and resist pathogen infections. In this study, we analyzed the effect of L. brevis 23017 on Yersinia enterocolitica intestinal infection in a BALB/c mouse model and discussed its underlying mechanism. We found that in the mouse model, L. brevis 23017 prevented the damage of villi in the small intestine and decelerated weight loss after Y. enterocolitica infection. Moreover, we focused on the mechanism of the protective effect of L. brevis 23017 from the perspective of the damage and repair of the intestinal mucosal barrier. We observed that L. brevis 23017 maintained a normal mucosal barrier by altering the expression of tight junction proteins. Notably, our results indicated that L. brevis 23017 effectively promoted the secretion of the intestine-specific secretory immunoglobulin A (SIgA) by B cells via regulating cytokines and oxidative damage levels. This mechanism may be the reason for its protective role in Y. enterocolitica infection. In addition, our results demonstrated that the mechanism of L. brevis 23017 was related to antibacterial colonization and inflammation regulation and closely related to antioxidative stress and SIgA promotion. The protective effect of L. brevis 23017 on mice was related to the signaling pathway protein p38 MAPK and the phosphorylation levels of NF-κB. Our study provided novel insight into the mechanism of Lactobacillus against pathogenic bacterial infections. Such insight is of great importance for the prevention, diagnosis, and treatment of related diseases.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Animals , Disease Models, Animal , Immunoglobulin A, Secretory , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , NF-kappa B/metabolism , Yersinia enterocolitica/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...