Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851683

ABSTRACT

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Subject(s)
Brassica napus , DNA Methylation , Gene Expression Regulation, Plant , Polyploidy , Brassica napus/genetics , Brassica napus/metabolism , Genes, Duplicate/genetics , Genes, Plant , Alternative Splicing , Gene Duplication , Epigenesis, Genetic
2.
J Inflamm Res ; 17: 1389-1396, 2024.
Article in English | MEDLINE | ID: mdl-38476469

ABSTRACT

Background: An unmet medical need for the treatment of inflammatory bowel disease (IBD) exists. A part of antidiabetic drugs had potential effects on IBD in various observational research. Objective: To investigate the potential of antidiabetic drugs on IBD. Methods: We undertook a summary-data-based Mendelian randomization (SMR) using the expression quantitative trait loci (eQTL) expressed in the blood or colon and a two sample Mendelian randomization (TSMR) utilizing single nucleotide polymorphism (SNP) of antidiabetic drug target genes mediated by blood glucose traits. Participants encompassed patients with IBD (25,042 cases/34,915 controls), UC (12,366 cases/33,609 controls), and CD (12,194 cases/28,072 controls). Data on eQTL in the blood or the colon were from the eQTLGen consortium (31,684 individuals) or GTEx Consortium V8, respectively. SMR was performed by SMR software (20,220,322); the primary method for TSMR was inverse-variance weighted (IVW) or Wald ratio through R studio (2023.06.0+421). Sensitivity analyses were carried out. Results: A 1-SD upper expression of the KCNJ11 gene (target gene of sulfonylureas) in the blood reduced the risk of CD (OR per 1-SD = 0.728, 95% CI = 0.586-0.903, P = 0.004) according to the result of SMR. ABCC8 (target gene of sulfonylureas) expressed in the colon did not affect CD, UC, or IBD. T2D-mediated KCNJ11 has a protective effect on CD (OR = 0.475, 95% CI = 0.297-0.761, P = 0.002). Gene predicted no relationship between T2D and CD. Conclusion: Sulfonylureas (SUs) may have side effects on CD. This work provides some suggestions for the selection of antidiabetic drugs in patients with CD.

3.
Clin Kidney J ; 16(9): 1447-1456, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37664572

ABSTRACT

Background: Increased intraperitoneal pressure (IPP) is associated with abdominal wall complications and technical failure in peritoneal dialysis (PD). Since the standard measurement of IPP is limited due to its cumbersome procedures, we aimed to develop and validate equations for estimating IPP. Methods: We performed a cross-sectional study with a total of 200 prevalent PD patients who were divided into development and validation datasets after random sampling matched by body mass index. The IPPs were measured using the Durand method, with whole-body and abdominal anthropometry indices collected. Equations with 2.0-L and 1.5-L fill volumes were generated by stepwise linear regression modelling. The bias, accuracy and precision of the estimated IPP (eIPP) with 2-L and 1.5-L fill volumes were compared with actual IPPs by the Durand method. The eIPP for the 2-L fill volume was also compared with other existing equations. Results: Two new equations incorporating waist circumference and height from the decubitus plane to mid-axillary line were generated. The eIPPs exhibited small biases in relation to the Durand method , with median differences of -0.24 cmH2O and -0.10 cmH2O for 2 L and 1.5 L, respectively. The precisions evaluated by the standard deviation of the absolute value of the differences were 2.59 cmH2O and 2.50 cmH2O, respectively. The accuracies evaluated by the value of the percentage of estimates that differed by >20% for the eIPP were 26% for 2.0 L and 27% for 1.5 L. Better bias, precision and accuracy were observed for the eIPP equation compared with other existing equations for the 2.0-L fill volume. Conclusions: We provided two new equations developed from abdominal anthropometry indices to accurately estimate the IPP in the PD population.

4.
Cell Rep ; 41(11): 111833, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516746

ABSTRACT

Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.


Subject(s)
Amygdala , Basolateral Nuclear Complex , Mice , Animals , Amygdala/physiology , Nociception , Prefrontal Cortex/physiology , Pain
5.
Ecotoxicol Environ Saf ; 246: 114163, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36240522

ABSTRACT

BACKGROUND: Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity whose evidence is limited, but its mechanism remains unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis, toxicity targets, and potential mechanisms. METHODS: Male C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg/day) for 28 consecutive days. Then, the tissue and sperm of mice were collected for analysis. We measured the gonadosomatic index and analyzed sperm concentration, motility, malformation rate, and mitochondrial membrane potential (MMP). Spermatocyte immunofluorescence staining was performed to analyze meiosis. We also performed pathological staining on the testis and epididymis tissue and TUNEL staining, immunohistochemical analysis, and ultrastructural observation on the testicular tissue. RESULTS: Results showed that FLC caused testicular weight reduction, dysfunction, and architectural damage in mice, but no significant adverse effect was found in the epididymis. The exposure interfered with spermatogonial proliferation and meiosis, affecting sperm concentration, motility, kinematic parameters, morphology, and MMP, decreasing sperm quality. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. CONCLUSION: We found that FLC has significant adverse effects on spermatogonial proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis, which decreased sperm quality. The data provided references for the toxicity risk and research methods of FLC application in the environment.


Subject(s)
Infertility, Male , Sertoli Cells , Humans , Male , Mice , Animals , Testis , Mice, Inbred C57BL , Semen , Spermatogenesis , Infertility, Male/pathology , Spermatozoa
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054810

ABSTRACT

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


Subject(s)
Brassica napus/genetics , Diploidy , Genome, Plant , Multigene Family , Polyploidy , Base Sequence , Chromosomes, Plant/genetics , Exons/genetics , Gene Duplication/genetics , Gene Expression Regulation, Plant , Genes, Plant , Introns/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Subcellular Fractions/metabolism , Synteny/genetics
7.
New Phytol ; 232(2): 898-913, 2021 10.
Article in English | MEDLINE | ID: mdl-34265096

ABSTRACT

This study explores how allopolyploidization reshapes the biased expression and asymmetric epigenetic modification of homoeologous gene pairs, and examines the regulation types and epigenetic basis of expression bias. We analyzed the gene expression and four epigenetic modifications (DNA methylation, H3K4me3, H3K27me3 and H3K27ac) of 29 976 homoeologous gene pairs in resynthesized, natural allopolyploid Brassica napus and an in silico 'hybrid'. We comprehensively elucidated the biased gene expression, asymmetric epigenetic modifications and the generational transmission characteristics of these homoeologous gene pairs in B. napus. We analyzed cis/trans effects and the epigenetic basis of homoeolog expression bias. There was a significant positive correlation between two active histone modifications and biased gene expression. We revealed that parental legacy was the dominant principle in the remodeling of homoeolog expression bias and asymmetric epigenetic modifications in B. napus, and further clarified that this depends on whether there were differences in the expression/epigenetic modifications of gene pairs in parents/progenitors. The maternal genome was dominant in the homoeolog expression bias of resynthesized B. napus, and this phenomenon was attenuated in natural B. napus. Furthermore, cis rather than trans effects were dominant when epigenetic modifications potentially affected biased expression of gene pairs in B. napus.


Subject(s)
Brassica napus , Brassica napus/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genome, Plant/genetics , Polyploidy
8.
Reprod Biol Endocrinol ; 19(1): 64, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902598

ABSTRACT

BACKGROUND: Fluorochloridone (FLC), a selective pyrrolidone herbicide, has been recognized as a potential endocrine disruptor and reported to induce male reproductive toxicity, but the underlying mechanism is unclear. The aim of this study was to investigate the mechanism of FLC-induced reproductive toxicity on male mice with particular emphasis on the role of autophagy in mice' TM4 Sertoli cells. METHODS: Adult C57BL/6 mice were divided into one control group (0.5% sodium carboxymethyl cellulose), and four FLC-treated groups (3,15,75,375 mg/kg). The animals (ten mice per group) received gavage for 28 days. After treatment, histological analysis, sperm parameters, the microstructure of autophagy and the expression of autophagy-associated proteins in testis were evaluated. Furthermore, to explore the autophagy mechanism, TM4 Sertoli cells were treated with FLC (0,40,80,160 µM) in vitro for 24 h. Cell activity and cytoskeletal changes were measured by MTT assay and F-actin immunofluorescence staining. The formation of autophagosome, accumulation of reactive oxygen species (ROS), expression of autophagy marker proteins (LC3, Beclin-1 and P62) and AKT-related pathway proteins (AKT, mTOR) were observed. The ROS scavenger N-acetylcysteine (NAC) and AKT agonist (SC79) were used to treat TM4 cells to observe the changes of AKT-mTOR pathway and autophagy. RESULTS: In vivo, it showed that FLC exposure caused testicular injuries, abnormality in epididymal sperm. Moreover, FLC increased the formation of autophagosomes, the accumulation of LC3II/LC3I, Beclin-1 and P62 protein, which is related to the degradation of autophagy. In vitro, FLC triggered TM4 cell autophagy by increasing the formation of autophagosomes and upregulating of LC3II/LC3I, Beclin-1 and P62 levels. In addition, FLC induced ROS production and inhibited the activities of AKT and mTOR kinases. The Inhibition of AKT/mTOR signaling pathways and the activation of autophagy induced by FLC could be efficiently reversed by pretreatment of NAC. Additionally, decreased autophagy and increased cell viability were observed in TM4 cells treated with SC79 and FLC, compared with FLC alone, indicating that FLC-induced autophagy may be pro-death. CONCLUSION: Taken together, our study provided the evidence that FLC promoted autophagy in TM4 Sertoli cells and that this process may involve ROS-mediated AKT/mTOR signaling pathways.


Subject(s)
Autophagy/drug effects , Endocrine Disruptors/pharmacology , Herbicides/pharmacology , Proto-Oncogene Proteins c-akt/physiology , Pyrrolidinones/pharmacology , Sertoli Cells/drug effects , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Acetates/pharmacology , Acetylcysteine/pharmacology , Animals , Autophagy/physiology , Benzopyrans/pharmacology , Cell Shape , Herbicides/toxicity , Male , Mice , Mice, Inbred C57BL , Pyrrolidinones/toxicity , Random Allocation , Reactive Oxygen Species , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatozoa/drug effects , Spermatozoa/ultrastructure
9.
Ecotoxicol Environ Saf ; 216: 112183, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33812209

ABSTRACT

Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity which underlying mechanism is still largely unknown. The present study was conducted to determine the effects of FLC on Sertoli cell and explore its mechanism by using normal mouse Sertoli (TM4) cell line. Our data indicate that FLC suppressed proliferation of TM4 cells in a dose- and time-dependent manner. Further studies confirmed that FLC induced apoptosis in TM4 cells, accompanied by reactive oxygen species (ROS) accumulation, intracellular calcium increase, opening of mitochondrial permeability transition pore, depolarization of the mitochondrial membrane potential (MMP) and decrease of adenosine triphosphate (ATP) level. Meanwhile, changes of B-cell lymphoma-2 (Bcl-2) family proteins expression, release of cytochrome c and the activation of caspase-9 and caspase-3 were also confirmed. These results indicate that FLC induces TM4 cells apoptosis through the mitochondrial apoptotic pathway. In addition, pretreatment with ROS scavenger N-acetyl-L-cysteine (NAC), could significantly alleviate FLC-induced TM4 cells apoptosis and MMP depolarization. In conclusion, our results suggested that FLC induced TM4 cells apoptosis and it was regulated by mitochondrial dysfunction and oxidative stresses.

10.
Biol Trace Elem Res ; 168(2): 335-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26043914

ABSTRACT

Proper trace element level is crucial for the organs in maintaining normal physiological functions. Multiple organ failure (MOF) might be added to critically ill patients due to a lack of trace elements. Alterations of trace element levels in brain, heart, liver, and kidney after severe trauma, however, have been little studied so far. In this study, tissue samples of the frontal cortex of the brain, interventricular septum of the heart, right lobe of the liver, and upper pole of the kidney were obtained from forensic autopsies, of which 120 cases died during the 5th to 15th day of hospitalization, whereas the trauma death group and 43 cases immediately died due to severe craniocerebral trauma as the control group. Copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) were quantified by inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Cu, Fe, Zn, and Se concentrations in the brain, heart, liver, and kidney in the trauma group decreased dramatically (p<0.05) compared to the control group. The incidence of secondary infection and multiple organ failure (MOF) in the trauma death group were 78.33 and 29.17%, respectively. The concentrations of all elements exhibited a significant correlation with secondary infection and MOF (p<0.01). Our data suggest that low concentrations of Cu, Fe, Zn, and Se in pivotal organs may contribute to the incidence of secondary infection and MOF after severe trauma, which to some extent results in death.


Subject(s)
Coinfection/blood , Multiple Organ Failure/blood , Trace Elements/analysis , Wounds and Injuries/blood , Adult , Autopsy , Brain/metabolism , Coinfection/mortality , Copper/analysis , Female , Hospitalization , Humans , Iron/analysis , Kidney/metabolism , Liver/metabolism , Male , Middle Aged , Multiple Organ Failure/mortality , Myocardium/metabolism , Selenium/analysis , Spectrophotometry, Atomic , Tissue Distribution , Wounds and Injuries/mortality , Zinc/analysis
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(7): 1848-53, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26717738

ABSTRACT

Snow can directly affect the surface energy balance and climate change and has a significant impact on human life and production. It is therefore of great significance to study the fresh snow emission spectroscopy properties by using the thermal infrared Polarization technique. This can provide a basis for quantitative thermal infrared remote sensing monitoring of snow as well as a deeper understanding of global warming and appropriate countermeasures. This paper focuses on the investigation of the thermal infrared polarization properties of the fresh snow. The results show that the thermal emissive polarization properties of fresh snow depend significantly on the wavelengths (channels) and view angles used to measure them. Four channels are considered in this study, their spectral response ranges are 8-14 microm for channel 1 (CH1), 11.5-12.5 microm for channel 2 (CH2), 10.3-11.5 microm for channel 3 (CH) and 8.2-9.2 microm for channel 4 (CH4). The snow polarized radiance (L) and its polarized brightness temperature (T) manifest as L(CH1) >L(CH3) > L(CH4) > L(CH2) and T(CH4) > T(CH1) > T(CH2) > TCH3, respectively, while the degree of polarization (P) manifests as P0 > P30 > P40 > P20 > P0 > P50 where the subscript of P denotes the view angle. The maximum of both L and T occurs at the view angle of 50 degree and polarization angle of 90 degree while their minimum appears at the view angle of 30 degree and polarization angle of 75 degree for each channel. In addition, the results show that: CH3 is more appropriate for better investigation of the emissive polarization properties of snow. Linear relationship is found between the fresh snow polarized T and the polarization angle with the coefficient of determination larger than 0.77 for all four channels. The polarized brightness temperature of the fresh snow is found to be increased about 0.003 K per polarization angle within 0-135 degree. The degree of polarization of snow is almost independent of the channels we used (CH1 to CH4). The snow emissive polarization is isotropic and the relative azimuth view angle has no significant impact on the snow emissive polarization properties. The impact of the polarization angle may be neglected if the investigation of the relative azimuth view angle on the fresh snow thermal emissive polarization is conducted. The difference of the fresh snow emissive polarization properties mainly comes from the snow surface roughness and structure.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(9): 2495-9, 2014 Sep.
Article in Chinese | MEDLINE | ID: mdl-25532352

ABSTRACT

In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.


Subject(s)
Plants , Remote Sensing Technology , Light , Models, Theoretical , Spectrum Analysis
13.
Neural Regen Res ; 9(13): 1303-12, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25221583

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons in the preoptic area may undergo morphological changes during the pubertal period when their activities are upregulated. To clarify the regulatory mechanism of puberty onset, this study aimed to investigate the morphological changes of GnRH neurons in the preoptic area of GnRH-enhanced green fluorescent protein transgenic rats. Under confocal laser microscopy, pubertal GnRH neurons exhibited an inverted Y distribution pattern. Prepubertal GnRH neurons were generally unipolar and bipolar, and were distinguished as smooth type cells with few small processes or irregular type cells with many spine-like processes in the proximal dendrites. The number of GnRH neurons in the preoptic area and spine-like processes were increased during the course of reproductive maturation. There was no significant difference between male and female rats. Immunofluorescence staining revealed synaptophysin punctae close to the distal end of GnRH neurons, indicating that some presynaptic terminals may form a synaptic linkage with these neurons.

14.
Neural Regen Res ; 8(2): 162-8, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-25206487

ABSTRACT

Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected with 1, 10, or 100 pM kisspeptin-10, a peptide derived from full-length kisspeptin, into the arcuate nucleus and medial preoptic area, and with the kisspeptin antagonist peptide 234 into the lateral cerebral ventricle. The results of immunohistochemical staining revealed that pulsatile luteinizing hormone secretion was suppressed after injection of antagonist peptide 234 into the lateral cerebral ventricle, and a significant increase in luteinizing hormone level was observed after kisspeptin-10 injection into the arcuate nucleus and medial preoptic area. The results of an enzyme-linked immunosorbent assay showed that luteinizing hormone levels during the first hour of kisspeptin-10 infusion into the arcuate nucleus were significantly greater in the 100 pM kisspeptin-10 group than in the 10 pM kisspeptin-10 group. These findings indicate that kisspeptin directly promotes gonadotropin-releasing hormone secretion and luteinizing hormone release in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. The arcuate nucleus is a key component of the kisspeptin-G protein-coupled receptor 54 signaling pathway underlying regulating luteinizing hormone pulse secretion.

15.
Zhongguo Zhen Jiu ; 31(7): 601-4, 2011 Jul.
Article in Chinese | MEDLINE | ID: mdl-21823280

ABSTRACT

OBJECTIVE: To explore the efficacy and safety of acupoint catgut embedding combined with vessel pricking therapy for ankylosing spondylitis (AS). METHODS: Eighty-six cases of AS were randomly divided into an acupoint catgut embedding combined vessel pricking group (group A) and a medication group(group B), 43 cases in each group. In the group A, acupoint catgut embedding combined with vessel pricking therapy were applied at Shenshu(BL 23), Dazhu (BL 11) and Jiaji (EX-B 2) etc. The group B was treated with oral administration of Sulfasalazine (SASP). The treatment lasted for 8 weeks. Symptom score, Visual Analogue Scale(VAS), the indices of morning stiff duration, Schober test, occiput to wall distance, chest expansion, erythrocyte sedimentation rate (ESR) and C-response protein (CRP) were compared before and after treatment between two groups. RESULTS: After treatment, the total effective rate was 83.7% (36/43) in the group A, which was superior to that of 70.0% (28/40) in the group B (P < 0.05). The improvements of all indices in two groups were more significant than those before treatment (all P < 0.01), and symptom score, Schober test score and VAS score in group A were superior to those in the group B (P < 0.01, P < 0.05). No adverse reaction occurred in the group A. CONCLUSION: The therapeutic effect of acupoint catgut embedding combined with vessel pricking therapy for AS is preferable without any adverse effects, which is superior to that of oral administration of SASP.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Bloodletting , Spondylitis, Ankylosing/therapy , Adolescent , Adult , Catgut , Combined Modality Therapy , Female , Humans , Male , Middle Aged , Young Adult
16.
Biochem J ; 439(3): 487-95, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21736558

ABSTRACT

The nucleosomes occupying the chromosomal start sites of transcription contain the histone H2A variant H2A.Z in place of H2A. Upon galactose induction, nucleosomes are evicted from the GAL1 locus in Saccharomyces cerevisiae cells. H2A.Z (which is encoded by the HTZ1 gene in S. cerevisiae) is required for the eviction of the GAL1 promoter nucleosome and for the transcriptional activation of the GAL1 gene; however, histones are also important for transcriptional repression and we asked in the present paper if H2A.Z also plays a role in the glucose repression of the GAL1 promoter. With the help of a fusion of the URA3 ORF (open reading frame) to the GAL1 promoter, we were able to detect two different epigenetic transcription states of the GAL1 promoter in glucose-grown cells lacking H2A.Z: a repressed state that is occupied by a H2A-containing nucleosome and a derepressed state that is nucleosome-free. These two chromatin states are inherited stably through many cell divisions. According to the model described in the present paper, the role of H2A.Z is to facilitate the addition and removal of promoter nucleosomes and to prevent the formation of unfavourable stable epigenetic chromatin structures, which are not in accordance with the environmental conditions.


Subject(s)
Chromatin/genetics , Genetic Variation , Histones/genetics , Protein Stability , Saccharomyces cerevisiae Proteins/genetics , Chromatin/chemistry , Epigenesis, Genetic/genetics , Histones/chemistry , Nucleosomes/chemistry , Nucleosomes/genetics , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/chemistry
17.
Zhongguo Zhen Jiu ; 30(3): 253-4, 2010 Mar.
Article in Chinese | MEDLINE | ID: mdl-20496743

ABSTRACT

Moxibustion therapy is a non-invasive and natural therapy that is accepted by modern society with advantages of effectiveness and low-cost. However, the traditional process of producing hand-made moxa cone is time consuming, complicated, inefficient and difficult for mass production. Consequently, it hardly meets the clinical demands. This seriously reduces the popularization and promotion of traditional therapy with moxa cone. To deal with this problem, a new type of convenient moxa cone maker, which can easily and quickly produce multi-model moxa cones in mass production with constant specifications and uniform density. The mass production process is saving in material and low cost with high production efficiency. Application of the convenient moxa cone maker meets the needs of moxa cone in the clinical and scientific research and contributes to the popularization and promotion of traditional therapy with moxa cone.


Subject(s)
Equipment Design , Moxibustion/instrumentation , Moxibustion/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...