Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Cell ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38936359

ABSTRACT

Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.

2.
Materials (Basel) ; 15(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35161165

ABSTRACT

A series of mathematical models were proposed to calculate the roll force, torque and power for cold strip asymmetrical rolling by means of the slab method, taking the percentages of the forward-slip, backward-slip and cross-shear zones into account. The friction power, plastic work and total energy consumption can be obtained by the models. The effects of variable rolling parameters-such as the speed ratio, entry thickness, friction coefficient and front and back tension-on the process of asymmetrical rolling are analyzed. In all cases, an increase in speed ratio leads to an increase in friction work and its proportions. The increase in entry thickness and deformation resistance causes both friction work and plastic deformation work to increase. The proportion of friction work decreases with increasing deformation resistance, entry thickness, front tension and back tension. In the circumstances of a thin strip being rolled with a large speed ratio, the proportion of friction work could exceed that of plastic deformation work. The concept of a threshold point of friction work was proposed to explain this phenomenon. As an example, threshold points T1, T2, T3 with the effect of the entry thickness and S1, S2, S3 with the effect of the friction coefficient have been obtained by computation. Finally, the experiment of the strip asymmetrical rolling was conducted, and a maximum error of 9.7% and an RMS error of 5.9% were found in the comparison of roll forces between experimental measurement values and calculated ones.

3.
Org Lett ; 23(20): 8050-8055, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34612655

ABSTRACT

A metal-free intramolecular borylative cyclization of 1,6-allenynes driven by BCl3 was developed. This method provides a general and practical strategy to construct valuable pyrrolidines containing all-carbon quaternary centers or 3,5-dihydroazepine derivatives depending on the substituents of the allene, with conjugative and sterically hindered phenyl groups favoring the latter.

4.
PLoS One ; 15(8): e0237039, 2020.
Article in English | MEDLINE | ID: mdl-32776956

ABSTRACT

The deformation law for axisymmetric deformation during the drawing of a core filled tube (CORFT) has been studied. However, the results of such studies could not be used in the flat rolling process of the CORFT, which is a plan deformation condition. In this paper, the inner core material and outer steel tube were successively analyzed based on the slab method during the flat rolling process (plan deformation) of the CORFT, and equations for wall thickness, core density, and roll force have been developed. The theoretical results solved by the developed equations were compared with the experimental results, revealing adequate accuracy for engineering requirements. The influences of rolling parameters on the roll force and the ultimate value of the relative density of the core material were studied, and the limiting condition for a larger roll force or higher value for relative density was obtained.


Subject(s)
Steel/chemistry , Compressive Strength , Computer Simulation , Construction Materials , Manufactured Materials , Mechanical Phenomena , Tensile Strength
5.
Org Lett ; 21(23): 9438-9441, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31710501

ABSTRACT

A direct and convenient approach for the coupling of propargylic substrates with diphenylphosphine oxide in the presence of Tf2O and 2,6-lutidine has been developed. The method provides a general approach for the construction of attractive allenylphosphoryl skeletons with high atom and step economy under metal free conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...