Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765867

ABSTRACT

Concrete is the most commonly used construction material nowadays. With emerging cutting-edge technologies such as nanomaterials (graphene, carbon nanotubes, etc.), advanced sensing (fiber optics, computer tomography, etc.), and artificial intelligence, concrete can now achieve self-sensing, self-healing, and ultrahigh performance. The concept and functions of smart concrete have thus been partially realized. However, due to the wider application location (coastal areas, cold regions, offshore, and deep ocean scenarios) and changing climate (temperature increase, more CO2 emissions, higher moisture, etc.), durability monitoring (pH, ion penetration, carbonation, corrosion, etc.) becomes an essential component for smart concrete. Fiber optic sensors (FOS) have been widely explored in recent years for concrete durability monitoring due to their advantages of high sensitivity, immunity to harsh environments, small size, and superior sensitivity. The purpose of this review is to summarize FOS development and its application in concrete durability monitoring in recent years. The objectives of this study are to (1) introduce the working principle of FOS, including fiber Bragg grating (FBG), long-period fiber grating (LPFG), surface plasmon resonance (SPR), fluorescence-based sensors, and distributed fiber optic sensors (DFOS); (2) compare the sensitivity, resolution, and application scenarios of each sensor; and (3) discuss the advantages and disadvantages of FOS in concrete durability monitoring. This review is expected to promote technical development and provide potential research paths in the future for FOS in durability monitoring in smart concrete.

2.
Article in English | MEDLINE | ID: mdl-36429845

ABSTRACT

Electroencephalogram (EEG) signals are the gold standard tool for detecting epileptic seizures. Long-term EEG signal monitoring is a promising method to realize real-time and automatic epilepsy detection with the assistance of computer-aided techniques and the Internet of Medical Things (IoMT) devices. Machine learning (ML) algorithms combined with advanced feature extraction methods have been widely explored to precisely recognize EEG signals, while among which, little attention has been paid to high computing costs and severe information losses. The lack of model interpretability also impedes the wider application and deeper understanding of ML methods in epilepsy detection. In this research, a novel feature extraction method based on an autoencoder (AE) is proposed in the time domain. The architecture and mechanism are elaborated. In this method, specified features are defined and calculated on the basis of signal reconstruction quantification of the AE. The EEG recognition is performed to validate the effectiveness of the proposed detection method, and the prediction accuracy reached 97%. To further investigate the superiority of the proposed AE-based feature extraction method, a widely used feature extraction method, PCA, is allocated for comparison. In order to understand the underlying working mechanism, permutation importance and SHapley Additive exPlanations (SHAP) are conducted for model interpretability, and the results further confirm the reasonability and effectiveness of the extracted features by AE reconstruction. With high computing efficiency in the time domain and an extensively satisfactory accuracy, the proposed epilepsy detection method exhibits great superiority and potential in almost real-time and automatic epilepsy monitoring.


Subject(s)
Epilepsy , Internet of Things , Humans , Electroencephalography , Epilepsy/diagnosis , Machine Learning , Algorithms
3.
Sensors (Basel) ; 22(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408118

ABSTRACT

Damage detection of railway tracks is vital to ensure normal operation and safety of the rail transit system. Piezoelectric sensors, which are widely utilized to receive ultrasonic wave, may be disturbed in the railway system due to strong electromagnetic interference (EMI). In this work, a hybrid ultrasonic sensing system is proposed and validated by utilizing a lead-zirconate-titanate (PZT) actuator and a fiber Bragg grating (FBG) sensor to evaluate damage conditions of the railway tracks. The conventional ultrasonic guided wave-based method utilizing direct wave to detect damages is limited by the complex data analysis procedure and low sensitivity to incipient damage. Diffuse ultrasonic wave (DUW), referring to later arrival wave packets, is chosen in this study to evaluate structural conditions of railway tracks due to its high sensitivity, wider sensing range, and easy implementation. Damages with different sizes and locations are introduced on the railway track to validate the sensitivity and sensing range of the proposed method. Two damage indices are defined from the perspective of energy attenuation and waveform distortion. The experimental results demonstrate that the DUW signals received by the hybrid sensing system could be used for damage detection of the railway tracks and the waveform-distortion-based index is more efficient than the energy-based index.


Subject(s)
Ultrasonic Waves , Ultrasonics
4.
Sensors (Basel) ; 19(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817484

ABSTRACT

The grouting quality of tendon ducts is very important for post-tensioning technology in order to protect the prestressing reinforcement from environmental corrosion and to make a smooth stress distribution. Unfortunately, various grouting defects occur in practice, and there is no efficient method to evaluate grouting compactness yet. In this study, a method based on wavelet packet transform (WPT) and Bayes classifier was proposed to evaluate grouting conditions using stress waves generated and received by piezoelectric transducers. Six typical grouting conditions with both partial grouting and cavity defects of different dimensions were experimentally investigated. The WPT was applied to explore the energy of received stress waves at multi-scales. After that, the Bayes classifier was employed to identify the grouting conditions, by taking the traditionally used total energy and the proposed energy vector of WPT components as input, respectively. The experimental results demonstrated that the Bayes classifier input with the energy vector could identify different grouting conditions more accurately. The proposed method has the potential to be applied at key spots of post-tensioning tendon ducts in practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...