Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Neurobiol ; 61(3): 1404-1416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37715891

ABSTRACT

Imbalance between excitation and inhibition is an important cause of epilepsy. Salt-inducible kinase 1 (SIK1) gene mutation can cause epilepsy. In this study, we first found that the expression of SIK3 is increased after epilepsy. Furthermore, the role of SIK3 in epilepsy was explored. In cultured hippocampal neurons, we used Pterosin B, a selective SIK3 inhibitor that can inhibit epileptiform discharges induced by the convulsant drug cyclothiazide (a positive allosteric modulator of AMPA receptors, CTZ). Knockdown of SIK3 inhibited epileptiform discharges and increased the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). In mice, knockdown of SIK3 reduced epilepsy susceptibility in a pentylenetetrazole (a GABAA receptor antagonist, PTZ) acute kindling experiment and increased the expression of GABAA receptor α1. In conclusion, our results suggest that blockade or knockdown of SIK3 can inhibit epileptiform discharges and that SIK3 has the potential to be a novel target for epilepsy treatment.


Subject(s)
Epilepsy , Receptors, GABA-A , Animals , Mice , Rats , Epilepsy/drug therapy , Epilepsy/genetics , gamma-Aminobutyric Acid , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Seizures/drug therapy , Seizures/genetics , Seizures/chemically induced
2.
CNS Neurosci Ther ; 29(11): 3460-3478, 2023 11.
Article in English | MEDLINE | ID: mdl-37269088

ABSTRACT

INTRODUCTION: As a devastating neurological disease, spinal cord injury (SCI) results in severe tissue loss and neurological dysfunction. Pregnane X receptor (PXR) is a ligand-activated nuclear receptor with a major regulatory role in xenobiotic and endobiotic metabolism and recently has been implicated in the central nervous system. In the present study, we aimed to investigate the role and mechanism of PXR in SCI. METHODS: The clip-compressive SCI model was performed in male wild-type C57BL/6 (PXR+/+ ) and PXR-knockout (PXR-/- ) mice. The N2a H2 O2 -induced injury model mimicked the pathological process of SCI in vitro. Pregnenolone 16α-carbonitrile (PCN), a mouse-specific PXR agonist, was used to activate PXR in vivo and in vitro. The siRNA was applied to knock down the PXR expression in vitro. Transcriptome sequencing analysis was performed to discover the relevant mechanism, and the NRF2 inhibitor ML385 was used to validate the involvement of PXR in influencing the NRF2/HO-1 pathway in the SCI process. RESULTS: The expression of PXR decreased after SCI and reached a minimum on the third day. In vivo, PXR knockout significantly improved the motor function of mice after SCI, meanwhile, inhibited apoptosis, inflammation, and oxidative stress induced by SCI. On the contrary, activation of PXR by PCN negatively influenced the recovery of SCI. Mechanistically, transcriptome sequencing analysis revealed that PXR activation downregulated the mRNA level of heme oxygenase-1 (HO-1) after SCI. We further verified that PXR deficiency activated the NRF2/HO-1 pathway and PXR activation inhibited this pathway in vitro. CONCLUSION: PXR is involved in the recovery of motor function after SCI by regulating NRF2/HO-1 pathway.


Subject(s)
Pregnane X Receptor , Spinal Cord Injuries , Animals , Male , Mice , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pregnane X Receptor/deficiency , Pregnane X Receptor/genetics , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism
3.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37344564

ABSTRACT

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Subject(s)
Pregnane X Receptor , Renal Insufficiency, Chronic , Wnt Signaling Pathway , Animals , Humans , Mice , beta Catenin/metabolism , Fibrosis , Mammals/metabolism , Pregnane X Receptor/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Rifampin/pharmacology
4.
Chin J Integr Med ; 29(6): 526-533, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36327048

ABSTRACT

OBJECTIVE: To explore the protective effect and mechanism of Kuntai (KT) Capsule on angiotensin II (Ang II)-induced hypertension in ovariectomized (OVX) rats. METHODS: Fifty-four rats were randomly divided into 6 groups according to a random number table, 9 in each group: control, OVX sham+Ang II, OVX, OVX+Ang II, OVX+Ang II +E2, and OVX+Ang II +KT. OVX rats model was constructed by retroperitoneal bilateral ovariectomy. After 4 weeks of pretreatment with KT Capsule [0.8 g/(kg·d) and 17- ß -estradiol (E2, 1.2 mg/(kg·d)] respectively, Ang II was injected into a micro-osmotic pump with a syringe to establish a hypertensive rat model. Blood pressure of rat tail artery was measured in a wake state of rats using a non-invasive sphygmomanometer. Blood pressure changes were compared between the intervention groups (OVX+Ang II +KT, OVX+Ang II +E2) and the negative control group (OVX+Ang II). Serum malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected respectively. The expressions of oxidative stress-related protein superoxide dismutase2 (SOD2) and anti-thioredoxin (TRX), autophagy marker protein [beclin1, light chain (LC) 3 II/I ratio and autophagy canonical pathway protein phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR)] were evaluated by Western blotting. RESULTS: Compared with the OVX+Ang II group, the systolic blood pressure of OVX+Ang II +KT group was significantly lowered (P<0.05) but not the diastolic blood pressure. Besides, SOD2 and TRX protein levels in mycardial tissues were significantly reduced in the OVX+Ang II +KT group compared with the OVX+Ang II group (P<0.05). Oxidative stress serum markers MDA and SOD were down- and up-regulated in the OVX+Ang II +KT group, respectively (P<0.05). Compared with OVX+Ang II group, the levels of cardiac proteins beclin-1 and LC3II/LC3 I in OVX+Ang II +KT group were also up-regulated (P<0.05), and the expression levels of p-PI3K, p-AKT and mTOR protein were down-regulated (P<0.05). CONCLUSION: KT could protect blood pressure of Ang II-induced OVX rats by inhibiting oxidative stress and up-regulating protective autophagy.


Subject(s)
Angiotensin II , Hypertension , Female , Rats , Animals , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Hypertension/drug therapy , Estradiol/pharmacology , Superoxide Dismutase , Ovariectomy , Mammals/metabolism
5.
Environ Microbiol ; 24(8): 3764-3776, 2022 08.
Article in English | MEDLINE | ID: mdl-35129273

ABSTRACT

Transmission rate and role in hosts contribute to the prevalence of an endosymbiont. However, factors affecting transmission and role of facultative endosymbionts are still not well understood. Here, we illustrated that host plants and environmental temperatures affected the transmission, relative abundance and role of Arsenophonus in the cotton aphid Aphis gossypii. The transmission rate of this endosymbiont from mother aphids to offspring was relatively lower. High temperatures impeded the transmission, and infection rates declined as aphids were exposed to 30°C. Contents of amino acids and secondary metabolites were remarkably different among host plants. Aphids feeding on zucchini leaves containing a higher titre of amino acids and lower secondary metabolites harboured a relatively lower abundance of Arsenophonus. Concentrations of an amino acid and a plant secondary metabolite, cucurbitacin B, in aphid diet were not associated with Arsenophonus abundance. However, gossypol, another plant secondary metabolite, was strongly related with the abundance. Arsenophonus imparted a fitness benefit to aphids, and the benefit was dependent on host plants and gossypol concentration. In sum, plant secondary metabolite and environmental temperature affect transmission, relative abundance and role of Arsenophonus, which determine the endosymbiont prevalence in aphid populations.


Subject(s)
Aphids , Gammaproteobacteria , Gossypol , Amino Acids , Animals , Plants , Prevalence , Symbiosis , Temperature
6.
Am J Physiol Renal Physiol ; 321(5): F617-F628, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34569253

ABSTRACT

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-reperfusion injury. In vitro and in vivo FXR activation was determined by a dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal ischemia-reperfusion injury (IRI). We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal ischemia-reperfusion-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against ischemia-reperfusion injury-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.NEW & NOTEWORTHY In the present study, we found that alisol B 23-acetate (ABA), an identified natural farnesoid X receptor (FXR) agonist from the well-known traditional Chinese medicine Alismatis rhizoma, protects against ischemic acute kidney injury (AKI) in an FXR-dependent manner, as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative stress, and suppressed inflammatory factor expression. Therefore, ABA may have great potential as a novel therapeutic agent in the treatment of AKI in the future.


Subject(s)
Acute Kidney Injury/prevention & control , Cholestenones/pharmacology , Drugs, Chinese Herbal/pharmacology , Kidney/drug effects , Receptors, Cytoplasmic and Nuclear/agonists , Reperfusion Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Disease Models, Animal , HEK293 Cells , Hep G2 Cells , Humans , Inflammation Mediators/metabolism , Kidney/metabolism , Kidney/pathology , Ligands , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
7.
Blood Adv ; 5(24): 5479-5489, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34507352

ABSTRACT

Transplant-associated thrombotic microangiopathy (TA-TMA) is a potentially life-threatening complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Information on markers for early prognostication remains limited, and no predictive tools for TA-TMA are available. We attempted to develop and validate a prognostic model for TA-TMA. A total of 507 patients who developed TA-TMA following allo-HSCT were retrospectively identified and separated into a derivation cohort and a validation cohort, according to the time of transplantation, to perform external temporal validation. Patient age (odds ratio [OR], 2.371; 95% confidence interval [CI], 1.264-4.445), anemia (OR, 2.836; 95% CI, 1.566-5.138), severe thrombocytopenia (OR, 3.871; 95% CI, 2.156-6.950), elevated total bilirubin (OR, 2.716; 95% CI, 1.489-4.955), and proteinuria (OR, 2.289; 95% CI, 1.257-4.168) were identified as independent prognostic factors for the 6-month outcome of TA-TMA. A risk score model termed BATAP (Bilirubin, Age, Thrombocytopenia, Anemia, Proteinuria) was constructed according to the regression coefficients. The validated c-statistic was 0.816 (95%, CI, 0.766-0.867) and 0.756 (95% CI, 0.696-0.817) for the internal and external validation, respectively. Calibration plots indicated that the model-predicted probabilities correlated well with the actual observed frequencies. This predictive model may facilitate the prognostication of TA-TMA and contribute to the early identification of high-risk patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Thrombotic Microangiopathies , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Prognosis , Retrospective Studies , Risk Factors , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology
8.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(4): 337-342, 2021 Jul.
Article in Chinese | MEDLINE | ID: mdl-34374250

ABSTRACT

Objective: To study the effect of the schizophrenia susceptible gene Sox11 on the migration of cortical neurons using mice as experimental animals. Methods: The real-time quantitative PCR and in situ hybridization were used to clarify the expression pattern of Sox11 in the cerebral cortex during development (E14.5, P0, P7, P14). The techniques of plasmid construction, transfection, in utero electroporation and immunostaining were used to explore the role of Sox11 in the neuronal radial migration by transfecting control shRNA plasmid, mSox11 shRNA plasmid and mSox11 shRNA post-interference recovery plasmid in mice of different ages (E17.5, P0, P4, P7). Results: Compared with control neurons, the migration of mSox11 shRNA transfected neurons was delayed significantly. When a part of the neurons in the control group had reached the surface of the neocortex, most of the neurons transfected with mSox11 shRNA remained in the middle area of the neocortex. After the rat Sox11 (rSox11) gene overexpression vector was used to recuse the mouse Sox11 (mSox11) gene interference in mice, the distribution of neurons after migration was basically the same as the control. The distribution of migrating neurons in the subventricular zone (SVZ), intermediate zone (IZ), and cortical plate (CP) was different significantly (P<0.01) after Sox11 interference and recovery. Conclusion: Sox11 can promote the migration of cortical neurons, suggesting that Sox11 plays a crucial role in the migration process of mouse cortical neurons.


Subject(s)
Neurogenesis , Neurons , Animals , Cell Movement , Cerebral Cortex , Electroporation , Mice , Rats , SOXC Transcription Factors/genetics
9.
Brain Behav ; 11(7): e02195, 2021 07.
Article in English | MEDLINE | ID: mdl-34029007

ABSTRACT

BACKGROUND: Accumulating evidence demonstrates that certain microRNAs play critical roles in epileptogenesis. Our previous studies found microRNA (miR)-129-2-3p was induced in patients with refractory temporal lobe epilepsy (TLE). In this study, we aimed to explore the role of miR-129-2-3p in TLE pathogenesis. METHOD: By bioinformatics, we predicted miR-129-2-3p may target the gene GABRA1 encoding the GABA type A receptor subunit alpha 1. Luciferase assay was used to investigate the regulation of miR-129-2-3p on GABRA1 3'UTR. The dynamic expression of miR-129-2-3p and GABRA1 mRNA and protein levels were measured in primary hippocampal neurons and a rat kainic acid (KA)-induced seizure model by quantitative reverse transcription-polymerase chain reaction (qPCR), Western blotting, and immunostaining. MiR-129-2-3p agomir and antagomir were utilized to explore their role in determining GABRA1 expression. The effects of targeting miR-129-2-3p and GABRA1 on epilepsy were assessed by electroencephalography (EEG) and immunostaining. RESULTS: Luciferase assay, qPCR, and Western blot results suggested GABRA1 as a direct target of miR-129-2-3p. MiR-129-2-3p level was significantly upregulated, whereas GABRA1 expression downregulated in KA-treated rat primary hippocampal neurons and KA-induced seizure model. In vivo knockdown of miR-129-2-3p by antagomir alleviated the seizure-like EEG findings in accordance with the upregulation of GABRA1. Furthermore, the seizure-suppressing effect of the antagomir was partly GABRA1 dependent. CONCLUSIONS: The results suggested GABRA1 as a target of miR-129-2-3p in rat primary hippocampal neurons and a rat kainic acid (KA) seizure model. Silencing of miR-129-2-3p exerted a seizure-suppressing effect in rats. MiR-129-2-3p/GABRA1 pathway may represent a potential target for the prevention and treatment of refractory epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , MicroRNAs , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/genetics , Humans , Kainic Acid , MicroRNAs/genetics , Rats , Receptors, GABA-A/genetics , Seizures
10.
J Clin Lab Anal ; 34(8): e23306, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32207210

ABSTRACT

BACKGROUND: Diverse and circumstantial evidence suggests that schizophrenia is a neurodevelopmental disorder. Genes contributing to neurodevelopment may be potential candidates for schizophrenia. The human SOX11 gene is a member of the developmentally essential SOX (Sry-related HMG box) transcription factor gene family and mapped to chromosome 2p, a potential candidate region for schizophrenia. METHODS: Our previous genome-wide association study (GWAS) implicated an involvement of SOX11 with schizophrenia in a Chinese Han population. To further investigate the association between SOX11 polymorphisms and schizophrenia, we performed an independent replication case-control association study in a sample including 768 cases and 1348 controls. RESULTS: After Bonferroni correction, four SNPs in SOX11 distal 3'UTR significantly associated with schizophrenia in the allele frequencies: rs16864067 (allelic P = .0022), rs12478711 (allelic P = .0009), rs2564045 (allelic P = .0027), and rs2252087 (allelic P = .0025). The haplotype analysis of the selected SNPs showed different haplotype frequencies for two blocks (rs4371338-rs7596062-rs16864067-rs12478711 and rs2564045-rs2252087-rs2564055-rs1366733) between cases and controls. Further luciferase assay and electrophoretic mobility shift assay (EMSA) revealed the schizophrenia-associated SOX11 SNPs may influence SOX11 gene expression, and the risk and non-risk alleles may have different affinity to certain transcription factors and can recruit divergent factors. CONCLUSIONS: Our results suggest SOX11 as a susceptibility gene for schizophrenia, and SOX11 polymorphisms and haplotypes in the distal 3'UTR of the gene might modulate transcriptional activity by serving as cis-regulatory elements and recruiting transcriptional activators or repressors. Also, these SNPs may potentiate as diagnostic markers for the disease.


Subject(s)
3' Untranslated Regions/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , SOXC Transcription Factors/genetics , Schizophrenia/genetics , Adolescent , Adult , Asian People/genetics , Case-Control Studies , Cell Line, Tumor , China , Female , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...