Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Cancer Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832928

ABSTRACT

Breast cancer includes several subtypes with distinct characteristic biological, pathological, and clinical features. Elucidating subtype-specific genetic etiology could provide insights into the heterogeneity of breast cancer to facilitate development of improved prevention and treatment approaches. Here, we conducted pairwise case-case comparisons among five breast cancer subtypes by applying a case-case GWAS (CC-GWAS) approach to summary statistics data of the Breast Cancer Association Consortium. The approach identified 13 statistically significant loci and eight suggestive loci, the majority of which were identified from comparisons between triple-negative breast cancer (TNBC) and luminal A breast cancer. Associations of lead variants in 12 loci remained statistically significant after accounting for previously reported breast cancer susceptibility variants, among which two were genome-wide significant. Fine mapping implicated putative functional/causal variants and risk genes at several loci, e.g., 3q26.31/TNFSF10, 8q22.3/NACAP1/GRHL2, and 8q23.3/LINC00536/TRPS1, for TNBC as compared to luminal cancer. Functional investigation further identified rs16867605 at 8q22.3 as a SNP that modulates enhancer activity of GRHL2. Subtype-informative polygenic risk scores (PRS) were derived, and patients with a high subtype-informative PRS had an up to 2-fold increased risk of being diagnosed with TNBC instead of luminal cancers. The CC-GWAS PRS remained statistically significant after adjusting for TNBC PRS derived from traditional case-control GWAS in The Cancer Genome Atlas and the African Ancestry Breast Cancer Genetic Consortium. The CC-GWAS PRS was also associated with overall survival and disease-specific survival among breast cancer patients. Overall, these findings have advanced our understanding of the genetic etiology of breast cancer subtypes, particularly for TNBC.

2.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825295

ABSTRACT

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Subject(s)
Adenosine , Adipocytes , Adipogenesis , Animals , Adipocytes/metabolism , Adipocytes/cytology , Methylation , Swine , Adipogenesis/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Phosphorylase Kinase/genetics , Phosphorylase Kinase/metabolism , Lipid Metabolism/genetics , Muscle, Skeletal/metabolism , Cell Differentiation/genetics
3.
J Biol Chem ; 300(7): 107426, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823637

ABSTRACT

Skeletal muscle is heterogeneous tissue, composed of fast-twitch fibers primarily relying on glycolysis and slow-twitch fibers primarily relying on oxidative phosphorylation. The relative expression and balance of glycolysis and oxidative phosphorylation in skeletal muscle are crucial for muscle growth and skeletal muscle metabolism. Here, we employed multi-omics approaches including transcriptomics, proteomics, phosphoproteomics, and metabolomics to unravel the role of circMYLK4, a differentially expressed circRNA in fast and slow-twitch muscle fibers, in muscle fiber metabolism. We discovered that circMYLK4 inhibits glycolysis and promotes mitochondrial oxidative phosphorylation. Mechanistically, circMYLK4 interacts with the voltage-gated calcium channel auxiliary subunit CACNA2D2, leading to the inhibition of Ca2+ release from the sarcoplasmic reticulum. The decrease in cytoplasmic Ca2+ concentration inhibits the expression of key enzymes, PHKB and PHKG1, involved in glycogen breakdown, thereby suppressing glycolysis. On the other hand, the increased fatty acid ß-oxidation enhances the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation. In general, circMYLK4 plays an indispensable role in maintaining the metabolic homeostasis of skeletal muscle.

4.
Ecotoxicol Environ Saf ; 281: 116604, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896900

ABSTRACT

Irritable bowel syndrome (IBS) patients exhibit significantly lower levels of serum selenium (Se) compared to healthy controls. This study integrates a prospective cohort analysis and animal experiments to investigate Se deficiency as a potential risk factor for IBS. Using data from the UK Biobank, a longitudinal analysis was conducted to explore the associations between dietary Se intake and the risk of incident IBS. In animal study, C57BL/6 mice were fed diets with normal (0.2 ppm) or low (0.02 ppm) Se levels to assess the impacts of Se deficiency on IBS symptoms. Furthermore, we performed 16 S rRNA sequencing, untargeted colonic fecal metabolomics analysis, and colon transcriptome profiling to uncover the regulatory mechanisms underlying Se deficiency-induced IBS. The analysis of UK Biobank data revealed a significant correlation between low dietary Se levels and an increased incidence of IBS. In the experimental study, a low Se diet induced IBS symptoms, evidenced by elevated abdominal withdrawal reflex scores, colon inflammation, and severe pathological damage to the colon. Additionally, the low Se diet caused disturbances in gut microbiota, characterized by an increase in Faecalibaculum and Helicobacter, and a decrease in Bifidobacterium and Akkermansia. Combined colonic fecal metabolomics and colon transcriptome analysis indicated that Se deficiency might trigger IBS through disruptions in pathways related to "bile excretion", "steroid hormone biosynthesis", "arachidonic acid metabolism", and "drug metabolism-cytochrome P450". These findings underscore the significant adverse effects of Se deficiency on IBS and suggest that Se supplementation should be considered for IBS patients.

5.
Clin Nutr ; 43(6): 1544-1550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754306

ABSTRACT

Few prospective studies have investigated the joint effect of lifestyle factors and genetic susceptibility on the risk of irritable bowel syndrome (IBS). This study aims to evaluate the associations of lifestyle and genetic factors with incident IBS in the UK Biobank. We analyzed data from 481,057 participants (54% female) without prevalent IBS at enrollment in the UK Biobank. An overall healthy lifestyle was defined using six modifiable lifestyle factors, including smoking, body mass index (BMI), sleep duration, diet, physical activity, and alcohol consumption, and hence categorized into 'favorable', 'intermediate', and 'unfavorable' lifestyles. A Cox proportional hazard model was used to investigate the association between a healthy lifestyle and incident IBS. Furthermore, we constructed a polygenic risk score (PRS) for IBS and assessed whether lifestyle modified the effect of genetics on the development of IBS. During a median follow-up of 12.1 years, 8645 incident IBS were ascertained. Specifically, among the six modifiable lifestyle factors, adequate sleep demonstrates the greatest protective effect (hazard ratio [HR]: 0.72, 95% CI: 0.69,0.75) against IBS. Compared with a favorable lifestyle, an unfavorable lifestyle was associated with a 56% (95% CI: 46%-67%) increased risk of IBS (P = 8.99 × 10-40). The risk of incident IBS was 12% (95% CI: 4%-21%) higher among those at high genetic risk compared with those at low genetic risk (P = 0.005). When considering the joint effect of lifestyle and genetic susceptibility, the HR nearly doubled among individuals with high genetic risk and unfavorable lifestyle (HR: 1.80; 95% CI:1.51-2.15; P = 3.50 × 10-11) compared to those with low genetic risk and favorable lifestyle. No multiplicative or addictive interaction was observed between lifestyle and genetics. The findings from this study indicated that lifestyle and genetic factors were independently associated with the risk of incident IBS. All these results implicated a possible clinical strategy of lowering the incidence of IBS by advocating a healthy lifestyle.


Subject(s)
Genetic Predisposition to Disease , Irritable Bowel Syndrome , Life Style , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/epidemiology , Female , Male , Prospective Studies , Middle Aged , Incidence , United Kingdom/epidemiology , Risk Factors , Adult , Proportional Hazards Models , Aged , Sleep/genetics , Healthy Lifestyle , Diet/statistics & numerical data
6.
Int J Gen Med ; 17: 1949-1965, 2024.
Article in English | MEDLINE | ID: mdl-38736664

ABSTRACT

Purpose: This study aims to investigate the process of small cell lung cancer (SCLC) patients from achieving optimal efficacy to experiencing disease progression until death. It examines the predictive value of the treatment response on progression free survival (PFS) and overall survival (OS) of SCLC patients. Patients and Methods: We conducted a retrospective analysis on 136 SCLC patients diagnosed from 1992 to 2018. Important prognostic factors were identified to construct nomogram models. The predictive performance of the models was evaluated using the receiver operating characteristic curves and calibration curves. Survival differences between groups were compared using Kaplan-Meier survival curves. Subsequently, an independent cohort consisting of 106 SCLC patients diagnosed from 2014 to 2021 was used for validation. Results: We constructed two nomograms to predict first-line PFS (PFS1) and OS of SCLC. The area under the receiver operating characteristic curves for the PFS1 nomogram predicting PFS at 3-, 6-, and 12-months were 0.919 (95% CI: 0.867-0.970), 0.908 (95% CI: 0.860-0.956) and 0.878 (95% CI: 0.798-0.958), and for the OS nomogram predicting OS at 6-, 12-, and 24-months were 0.814 (95% CI: 0.736-0.892), 0.819 (95% CI: 0.749-0.889) and 0.809 (95% CI: 0.678-0.941), indicating those two models with a high discriminative ability. The calibration curves demonstrated the models had a high degree of consistency between predicted and observed values. According to the risk scores, patients were divided into high-risk and low-risk groups, showing a significant difference in survival rate. And these findings were validated in another independent validation cohort. Conclusion: Based on the patients' treatment response after standardized treatment, we developed and validated two nomogram models to predict PFS1 and OS of SCLC. The models demonstrated good accuracy, reliability and clinical applicability by validating in an independent cohort.

7.
J Thorac Dis ; 16(4): 2432-2442, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738220

ABSTRACT

Background: In 2015, the World Health Organization (WHO) included spread through air space (STAS) as a new invasive mode of lung cancer. As a new mode of lung cancer dissemination, STAS has a significant and negative impact on patient prognosis. The surgical approach as well as lymph node dissection (LND) for STAS-positive patients is currently unclear. The aim of this study was to investigate the impact of different surgical approaches to STAS and LND on the prognosis of patients with ≤2 cm stage IA lung adenocarcinoma (LUAD). This study also investigated the possible relationship between STAS and the micropapillary histological subtype and its impact on patient prognosis. Methods: A total of 212 patients with LUAD were included in this study from January 2016 to December 2017, and the overall survival (OS) of the patients was compared. The chi-square test and t-test were applied to compare the clinicopathological data of the patients, and the Cox model was used for the multivariate survival analysis. Results: Of the 212 patients, 93 (43.9%) were STAS positive. The univariate analysis showed that the surgical approach, LND type, micropapillary pattern (MP), solid pattern, and STAS were risk factors for OS. The multivariate analysis showed that the surgical approach, MP, and STAS were risk factors for OS. The STAS-positive patients who underwent lobectomy had a better prognosis than those who underwent sublobar resection; however, there was no significant difference between the two surgical procedures in the STAS-negative group. Additionally, the STAS-positive patients who underwent systematic lymph node dissection (SLND) had a better prognosis than those who underwent limited lymph node dissection (LLND); however, there was no significant difference between the two LNDs in the STAS-negative group. Conclusions: STAS plays an important role in patient prognosis and is an independent risk factor for OS of patients with ≤2 cm stage IA LUAD. When STAS is positive, the choice of lobectomy with SLND may result in a better long-term prognosis for patients.

8.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698520

ABSTRACT

Root rot caused by Fusarium spp. is a destructive disease affecting agricultural regions worldwide. Strawberries (Fragaria × ananassa Duch.) are an economically important crop in China. In March 2023, root rot was observed in strawberries grown in Jinan, Shandong Province, China. Symptoms included leaf wilt, necrotic roots, and plant death (Figure 1). Four strawberry samples (two symptomatic and two asymptomatic) were collected from ~2-acre fields where the disease incidence rate ranged from 2 to 3%. Tissue pieces (5 mm × 5 mm × 5 mm) from two healthy and two diseased strawberry root tissues were surface-disinfected with 75% ethanol for 3 min, treated with 10% sodium hypochlorite for 5 min, and washed three times with sterile water. These pieces were cultured for 5 days at 28°C on potato dextrose agar (PDA) containing 200 mg/L timentin. Typical Fusarium spp. like growth was observed on plates with the two symptomatic samples. Two representative fungal isolates (CM1 and CM2) with similar morphological characteristics were purified using the single-spore method (Figure 1). CM1 showed an average growth rate of 5 mm/d in PDA and comprised of several white-to-cream aerial mycelia after 5 d. After cultivation in carnation leaf agar medium for 7 d, falciform macroconidia, with blunt apical cells and slightly hooked basal cells comprising 3 to 4 septa of varying sizes (20 to 39)×(3.6 to 6.7 µm) were observed (n=50) (Figure 1). The chlamydospores were spherical, terminal or intercalary, solitary or chain-forming, and 3.1-10.5 µm in diameter (Figure 1). The microconidia on PDA were (5.8 to 13.6)× (2.5 to 3.3) µm in size (n=50). These morphological characteristics are consistent with previous descriptions of the Fusarium solani species complex (FSSC). DNA was extracted using the CTAB method (Stenglein and Balatti 2006). The internal transcribed spacer (ITS), translation elongation factor 1-α gene (tef1), RNA polymerase II largest subunit (rpb1), and RNA polymerase II second largest subunit (rpb2) were amplified and sequenced using specific primers (O'Donnell et al. 2010). The ITS (OR526528, OR526529), tef1 (OR536947, OR536948), rpb1 (OR536949, OR536950), and rpb2 (OR536951, OR536952) sequences of the CM1 and CM2 isolates were uploaded to the NCBI database. BLASTn analysis revealed that the ITS, tef1, rpb1, and rpb2 sequences were 99.1-100% identical to those of the Fusarium falciforme reference strains NRRL 54989 and NRRL 54978. A phylogenetic tree based on the ITS, tef1, rpb1, and rpb2 sequences was generated using MEGA v.11 via the maximum-likelihood method (Tamura et al. 2021). CM1 clustered with the Fusarium falciforme reference strains NRRL 54989 and NRRL 54978 and belonged to the FSSC based on its morphological and molecular characteristics (Figure 2). To test for pathogenicity, the roots of nine 3-month-old healthy strawberry (cv. Akihime) plants were exposed to conidial suspensions (1×108 spores/mL) of the CM1 isolate. Another nine root samples were treated with sterile water and used as controls. All strawberry plants were maintained in a growth chamber under a 12/12 h light/dark cycle at 28°C and 90% relative humidity and the experiment was repeated three times. After one month, the inoculated plants had withered and died, and the pith became dark red (similar to field plants) (Figure 1). The fungi isolated from the experimental plants were confirmed as F. falciforme using morphological and sequence analyses. F. falciforme causes root rot in several species including Nicotiana tabacum (Qiu et al. 2023) and Weigela florida (Shen et al. 2020); however, this study is the first to report root rot caused by F. falciforme in strawberries in China. Overall, F. falciforme infection poses a threat to strawberry production and breeding.

9.
J Rheumatol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749557

ABSTRACT

OBJECTIVE: Although previous studies have explored the association of drinking with gout risk, we sought to explore the dose-response relationship and the evidence between subtypes of alcoholic beverages and gout risk. METHODS: The weekly alcoholic beverage consumption of patients in the UK Biobank was collected and calculated. The Cox regression model was applied to assess the effects of drinking alcohol in general and its subtypes on gout risk by calculating the hazard ratio (HR) and 95% CIs. Additionally, the restricted cubic splines were used to estimate the dose-response relationship between alcohol consumption and gout risk. To evaluate the robustness, we performed subgroup analysis across various demographic characteristics. RESULTS: During a mean follow-up period of 11.7 years, a total of 5728 new incident gout cases were diagnosed among 331,865 participants. We found that light alcohol consumption was linked to a slight decrease in gout incidence among female individuals (HR 0.78, 95% CI 0.65-0.94, P = 0.01), whereas there was no significant association in male individuals. Moreover, the dose-response relationship showed that drinking light red wine and fortified wine could reduce the gout risk, whereas beer or cider, champagne or white wine, and spirits increased the gout risk at any dose. CONCLUSION: Our study suggested a J-shaped dose-response relationship between drinking and gout risk in female individuals, but not in male individuals. For specific alcoholic beverages, light consumption of red wine and fortified wine was associated with reduced gout risk. These findings offer new insights into the roles of alcoholic beverages in gout incidence risk, although further validation is warranted.

10.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
11.
Insects ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786859

ABSTRACT

Insects constitute the largest proportion of animals on Earth and act as significant reservoirs and vectors in disease transmission. Rice thrips (Haplothrips aculeatus, family Phlaeothripidae) are one of the most common pests in agriculture. In this study, the full genome sequence of a novel Ollusvirus, provisionally named "Rice thrips ollusvirus 1" (RTOV1), was elucidated using transcriptome sequencing and the rapid amplification of cDNA ends (RACE). A homology search and phylogenetic tree analysis revealed that the newly identified virus is a member of the family Aliusviridae (order Jingchuvirales). The genome of RTOV1 contains four predicted open reading frames (ORFs), including a polymerase protein (L, 7590 nt), a glycoprotein (G, 4206 nt), a nucleocapsid protein (N, 2415 nt) and a small protein of unknown function (291 nt). All of the ORFs are encoded by the complementary genome, suggesting that the virus is a negative-stranded RNA virus. Phylogenetic analysis using polymerase sequences suggested that RTOV1 was closely related to ollusvirus 1. Deep small RNA sequencing analysis reveals a significant accumulation of small RNAs derived from RTOV1, indicating that the virus replicated in the insect. According to our understanding, this is the first report of an Ollusvirus identified in a member of the insect family Phlaeothripidae. The characterisation and discovery of RTOV1 is a significant contribution to the understanding of Ollusvirus diversity in insects.

12.
BMC Genomics ; 25(1): 400, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658807

ABSTRACT

BACKGROUND: Skeletal muscle is composed of muscle fibers with different physiological characteristics, which plays an important role in regulating skeletal muscle metabolism, movement and body homeostasis. The type of skeletal muscle fiber directly affects meat quality. However, the transcriptome and gene interactions between different types of muscle fibers are not well understood. RESULTS: In this paper, we selected 180-days-old Large White pigs and found that longissimus dorsi (LD) muscle was dominated by fast-fermenting myofibrils and soleus (SOL) muscle was dominated by slow-oxidizing myofibrils by frozen sections and related mRNA and protein assays. Here, we selected LD muscle and SOL muscle for transcriptomic sequencing, and identified 312 differentially expressed mRNA (DEmRs), 30 differentially expressed miRNA (DEmiRs), 183 differentially expressed lncRNA (DElRs), and 3417 differentially expressed circRNA (DEcRs). The ceRNA network included ssc-miR-378, ssc-miR-378b-3p, ssc-miR-24-3p, XR_308817, XR_308823, SMIM8, MAVS and FOS as multiple core nodes that play important roles in muscle development. Moreover, we found that different members of the miR-10 family expressed differently in oxidized and glycolytic muscle fibers, among which miR-10a-5p was highly expressed in glycolytic muscle fibers (LD) and could target MYBPH gene mRNA. Therefore, we speculate that miR-10a-5p may be involved in the transformation of muscle fiber types by targeting the MYHBP gene. In addition, PPI analysis of differentially expressed mRNA genes showed that ACTC1, ACTG2 and ACTN2 gene had the highest node degree, suggesting that this gene may play a key role in the regulatory network of muscle fiber type determination. CONCLUSIONS: We can conclude that these genes play a key role in regulating muscle fiber type transformation. Our study provides transcriptomic profiles and ceRNA interaction networks for different muscle fiber types in pigs, providing reference for the transformation of pig muscle fiber types and the improvement of meat quality.


Subject(s)
Gene Regulatory Networks , Animals , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Transcriptome , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Semin Arthritis Rheum ; 66: 152445, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579592

ABSTRACT

BACKGROUND: Limited research has been conducted on the association between long-term exposure to air pollutants and the incidence of gout. OBJECTIVES: This study aims to assess the individual and combined effects of prolonged exposure to five air pollutants (NO2, NOx, PM10, PMcoarse and PM2.52) on the incidence of gout among 458,884 initially gout-free participants enrolled in the UK Biobank. METHODS: Employing a land use regression model, we utilized an estimation method to ascertain the annual concentrations of the five air pollutants. Subsequently, we devised a weighted air pollution score to facilitate a comprehensive evaluation of exposure. The Cox proportional hazards model was utilized to investigate the association between ambient air pollution and gout risk. Interaction and stratification analyses were conducted to evaluate age, sex, BMI, and genetic predisposition as potential effect modifiers in the air pollution-gout relationship. Furthermore, mediation analyses were conducted to explore the potential involvement of biomarkers in mediating the association between air pollution and gout. RESULTS: Over a median follow-up time of 12.0 years, 7,927 cases of gout were diagnosed. Significant associations were observed between the risk of gout and a per IQR increase in NO2 (HR3: 1.05, 95 % CI4: 1.02-1.08, p = 0.003), NOx (HR: 1.04, 95 % CI: 1.01-1.06, p = 0.003), and PM2.5 (HR: 1.03, 95 % CI: 1.00-1.06, p = 0.030). Per IQR increase in the air pollution score was associated with an elevated risk of gout (p = 0.005). Stratified analysis revealed a significant correlation between the air pollution score and gout risk in participants ≥60 years (HR: 1.05, 95 % CI: 1.02-1.09, p = 0.005), but not in those <60 years (p = 0.793), indicating a significant interaction effect with age (p-interaction=0.009). Mediation analyses identified five serum biomarkers (SUA:15.87 %, VITD: 5.04 %, LDLD: 3.34 %, GGT: 1.90 %, AST: 1.56 %5) with potential mediation effects on this association. CONCLUSIONS: Long-term exposure to air pollutants, particularly among the elderly population, is associated with an increased risk of gout. The underlying mechanisms of these associations may involve the participation of five serum biomarkers.


Subject(s)
Air Pollutants , Air Pollution , Gout , Humans , Gout/epidemiology , Gout/genetics , Male , Female , Middle Aged , United Kingdom/epidemiology , Prospective Studies , Incidence , Air Pollutants/adverse effects , Aged , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Genetic Predisposition to Disease , Adult , Biological Specimen Banks , Risk Factors , Particulate Matter/adverse effects , UK Biobank
14.
Front Med (Lausanne) ; 11: 1308190, 2024.
Article in English | MEDLINE | ID: mdl-38596795

ABSTRACT

Backgrounds: Obesity is increasing in adolescents in China. However, the awareness of obesity and prevention on related risk factors were not well known. We aim to assess the effectiveness of short-term health education intervention on obesity in Chinese adolescents. Methods: In this study, 42 primary and secondary schools from Qingdao were randomly divided into the education and control groups. A total of 11,739 adolescents was included in the current study. The logistic regression was employed to assess odds ratio (OR) of education intervention on overweight and obesity prevalence adjusting for covariates. Results: The baseline prevalence of overweight and obesity was significantly higher in urban than in rural areas and in boys than in girls. After 1 year lifestyle intervention, the proportion of students with awareness of obesity was higher, meanwhile age-adjusted mean values of weight, body mass index, duration of watching TV and doing homework were lower in education group than control group. The corresponding figures were 43.6 [95% CI (confidence intervals); 43.3-43.9] kg versus 44.3 (95% CI; 44.0-44.6) kg, 18.6 (95% CI; 18.5-18.7) kg/m2 versus 18.9 (95% CI; 18.8-19.1) kg/m2, 1.3 (95% CI; 1.2-1.3) hours/d versus 1.4 (95% CI; 1.3-1.4) hours/d, and 1.5 (95% CI; 1.4-1.5) hours/d versus 1.8 (95% CI, 1.7-1.8) hours/d. The multivariable adjusted OR for combined prevalence of overweight and obesity was 0.85 (95% CI, 0.76-0.96) in education group as compared with control group. Conclusion: Short-term health education intervention results in significantly higher reductions in obesity parameters and improvement in awareness in Chinese adolescents.

15.
Plants (Basel) ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674467

ABSTRACT

SPL (SQUAMOSA promoter binding protein-like), as one family of plant transcription factors, plays an important function in plant growth and development and in response to environmental stresses. Despite SPL gene families having been identified in various plant species, the understanding of this gene family in peanuts remains insufficient. In this study, thirty-eight genes (AhSPL1-AhSPL38) were identified and classified into seven groups based on a phylogenetic analysis. In addition, a thorough analysis indicated that the AhSPL genes experienced segmental duplications. The analysis of the gene structure and protein motif patterns revealed similarities in the structure of exons and introns, as well as the organization of the motifs within the same group, thereby providing additional support to the conclusions drawn from the phylogenetic analysis. The analysis of the regulatory elements and RNA-seq data suggested that the AhSPL genes might be widely involved in peanut growth and development, as well as in response to environmental stresses. Furthermore, the expression of some AhSPL genes, including AhSPL5, AhSPL16, AhSPL25, and AhSPL36, were induced by drought and salt stresses. Notably, the expression of the AhSPL genes might potentially be regulated by regulatory factors with distinct functionalities, such as transcription factors ERF, WRKY, MYB, and Dof, and microRNAs, like ahy-miR156. Notably, the overexpression of AhSPL5 can enhance salt tolerance in transgenic Arabidopsis by enhancing its ROS-scavenging capability and positively regulating the expression of stress-responsive genes. These results provide insight into the evolutionary origin of plant SPL genes and how they enhance plant tolerance to salt stress.

16.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632554

ABSTRACT

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping , Triticum/genetics , Genetic Linkage , Plant Breeding , Phenotype
17.
BMC Med ; 22(1): 152, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589871

ABSTRACT

BACKGROUND: Despite substantial research revealing that patients with rheumatoid arthritis (RA) have excessive morbidity and mortality of cardiovascular disease (CVD), the mechanism underlying this association has not been fully known. This study aims to systematically investigate the phenotypic and genetic correlation between RA and CVD. METHODS: Based on UK Biobank, we conducted two cohort studies to evaluate the phenotypic relationships between RA and CVD, including atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF), and stroke. Next, we used linkage disequilibrium score regression, Local Analysis of [co]Variant Association, and bivariate causal mixture model (MiXeR) methods to examine the genetic correlation and polygenic overlap between RA and CVD, using genome-wide association summary statistics. Furthermore, we explored specific shared genetic loci by conjunctional false discovery rate analysis and association analysis based on subsets. RESULTS: Compared with the general population, RA patients showed a higher incidence of CVD (hazard ratio [HR] = 1.21, 95% confidence interval [CI]: 1.15-1.28). We observed positive genetic correlations of RA with AF and stroke, and a mixture of negative and positive local genetic correlations underlying the global genetic correlation for CAD and HF, with 13 ~ 33% of shared genetic variants for these trait pairs. We further identified 23 pleiotropic loci associated with RA and at least one CVD, including one novel locus (rs7098414, TSPAN14, 10q23.1). Genes mapped to these shared loci were enriched in immune and inflammatory-related pathways, and modifiable risk factors, such as high diastolic blood pressure. CONCLUSIONS: This study revealed the shared genetic architecture of RA and CVD, which may facilitate drug target identification and improved clinical management.


Subject(s)
Arthritis, Rheumatoid , Cardiovascular Diseases , Coronary Artery Disease , Heart Failure , Stroke , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Genome-Wide Association Study/methods , Genetic Predisposition to Disease/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/epidemiology , Coronary Artery Disease/genetics , Stroke/epidemiology , Stroke/genetics , Polymorphism, Single Nucleotide/genetics
18.
Mol Carcinog ; 63(5): 849-858, 2024 May.
Article in English | MEDLINE | ID: mdl-38517045

ABSTRACT

The association between metformin use and risk of prostate cancer remains controversial, while data from randomized trials is lacking. We aim to evaluate the association of genetically proxied metformin effects with prostate cancer risk using a drug-target Mendelian randomization (MR) approach. Summary statistics for prostate cancer were obtained from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (79,148 cases and 61,106 controls). Cis-expression quantitative trait loci (cis-eQTL) variants in the gene targets of metformin were identified in the GTEx project and eQTLGen consortium. We also obtained male-specific genome-wide association study data for type 2 diabetes, body mass index (BMI), total testosterone, bioavailable testosterone, estradiol, and sex hormone binding globulin for mediation analysis. Inverse-variance weighted (IVW) regression, weighted median, MR-Egger regression, and MR-PRESSO were performed in the main MR analysis. Multivariable MR was used to identify potential mediators and genetic colocalization analysis was performed to assess any shared genetic basis between two traits of interest. We found that genetically proxied metformin effects (1-SD HbA1c reduction, equivalent to 6.75 mmol/mol) were associated with higher risk of prostate cancer (odds ratioIVW [ORIVW]: 1.55, 95% confidence interval, CI: 1.23-1.96, p = 3.0 × 10-3). Two metformin targets, mitochondrial complex I (ORIVW: 1.48, 95% CI: 1.07-2.03, p = 0.016) and gamma-secretase complex (ORIVW: 2.58, 95%CI :1.47-4.55, p = 0.001), showed robust associations with prostate cancer risk, and their effects were partly mediated through BMI (16.4%) and total testosterone levels (34.3%), respectively. These results were further supported by colocalization analysis that expressions of NDUFA13 and BMI, APH1A, and total testosterone may be influenced by shared genetic factors, respectively. In summary, our study indicated that genetically proxied metformin effects may be associated with an increased risk of prostate cancer. Repurposing metformin for prostate cancer prevention in general populations is not supported by our findings.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Prostatic Neoplasms , Male , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Testosterone , Polymorphism, Single Nucleotide
19.
Int J Biol Macromol ; 265(Pt 1): 130711, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490378

ABSTRACT

Magnesium-trapped hydroxyapatite (Mg.HP) was hybridized with cellulose fiber to produce a bio-composite (CLF/HP) with enhanced adsorption affinities for two types of toxic pesticides (chlorpyrifos (CF) and omethoate (OM)). The enhancement influence of the hybridized cellulose on the adsorption performances of Mg.HP was illustrated based on the determined steric and energetic factors. The computed CF and OM adsorption performances of CLF/HP during the saturation phases are 279.8 mg/g and 317.9 mg/g, respectively, which are significantly higher than the determined values using Mg/HP (143.4 mg/g (CF) and 145.3 mg/g (OM)). The steric analysis demonstrates a strong impact of the hybridization process on the reactivity of the surface of the composite. While CLF/HP reflects effective uptake site densities (Nm) of 93.3 mg/g (CF) and 135.3 mg/g (OM), the estimated values for Mg.HP are 51.2 mg/g (CF) and 46.11 mg/g (OM), which explain the reported enhancement in the adsorption performances of the composite. The capacity of each uptake site to be occupied with more than one molecule (n (CF) = 3-3.74 and n (OM) = 2.35-3.54) suggests multimolecular uptake. The energetic factors suggested physical mechanistic processes of spontaneous and exothermic behaviors either during the uptake of CF or OM.


Subject(s)
Chlorpyrifos , Dimethoate/analogs & derivatives , Pesticides , Cellulose , Durapatite , Adsorption
20.
Zhongguo Fei Ai Za Zhi ; 27(2): 102-108, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38453441

ABSTRACT

BACKGROUND: Cough is one of the main complications after pulmonary surgery, which seriously affects the postoperative quality of life. Preserving the pulmonary branch of vagus nerve may reduce the incidence of postoperative cough. Therefore, the aim of this study was to investigate whether preserving the pulmonary branch of the vagus nerve could reduce the incidence of postoperative chronic cough in patients with stage I peripheral lung adenocarcinoma. METHODS: A total of 125 patients who underwent single-port thoracoscopic radical resection for lung cancer in the Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China from June 2022 to June 2023 were retrospectively selected, and divided into two groups according to whether the vagopulmonary branch was preserved during the operation, namely, the vagopulmonary branch group (n=61) and the traditional group (n=64). The general clinical data, perioperative conditions, lymph node dissection, Mandarin Chinese version of The Leicester Cough Questionnaire (LCQ-MC) scores before and 8 weeks after operation were recorded in the two groups. Both the two groups were divided into tamponade group and non-tamponade group according to whether autologous fat or gelatin sponge was tamponade after lymph node dissection. LCQ-MC scores and postoperative chronic cough of both groups were calculated. RESULTS: The LCQ-MC score of the traditional group was significantly lower than that of the vagopulmonary branch group in physiological, psychological, social and total scores at 8 weeks after surgery, and the difference was statistically significant (P<0.05). There were more cough patients in the traditional group than the vagopulmonary branch group at 8 weeks after surgery, with significant difference (P=0.006). Subgroup analysis was conducted separately for the vagopulmonary branch group and the traditional group. Among the patients in the vagopulmonary branch group and the traditional group, the LCQ-MC scores of the non-tamponade group 8 weeks after surgery were lower than those of the tamponade group (P<0.05). There were more patients with cough in the group 8 weeks after surgery than in the tamponade group (P=0.001, P=0.024). CONCLUSIONS: For patients with stage I peripheral lung adenocarcinoma, the preservation of the pulmonary branch of vagus nerve is safe and effective, which can reduce the incidence of postoperative chronic cough and improve the postoperative quality of life of the patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Lung Neoplasms/complications , Lung Neoplasms/surgery , Quality of Life , Retrospective Studies , Cough/etiology , Cough/epidemiology , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/complications , Chronic Cough , Vagus Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...