Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comp Immunol Microbiol Infect Dis ; 107: 102157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484424

ABSTRACT

Trichomonas gallinae, a protozoan parasite causing avian trichomonosis, exhibits a widespread global prevalence. It primarily affects the upper digestive tract of birds and has resulted in significant ecological problems worldwide. This study aimed to investigate the prevalence and genotypes of T. gallinae in Anhui Province, China. A total of 1612 oropharyngeal swab samples were collected from pigeon farms in Anhui Province to determine the prevalence of T. gallinae infection. The results revealed 565 (35.1%) positive samples of T. gallinae. Significant differences in infection rates were observed among different regions and age groups. Furthermore, the ITS1/5.8 S/ITS2 region was amplified, sequenced, and subjected to phylogenetic analysis. Genotypes A and B of T. gallinae were identified, and genotype B was the dominant genotype in Anhui Province. This is the first report on the prevalence and molecular characterization of T. gallinae in Anhui Province, China. Additionally, we integrated reports on the prevalence and genotype of T. gallinae in relevant provinces in China.


Subject(s)
Bird Diseases , Trichomonas , Animals , Trichomonas/genetics , Columbidae/parasitology , Prevalence , Phylogeny , Bird Diseases/epidemiology , Bird Diseases/parasitology , China/epidemiology
2.
PLoS One ; 18(10): e0290346, 2023.
Article in English | MEDLINE | ID: mdl-37856508

ABSTRACT

The artificial joint is one of the most effective methods to treat joint injuries. The service performance of artificial joints is gradually weakened because of the wear of artificial joints in actual service. In order to obtain the potential failure mechanism of the artificial joint in actual service, the study was carried out with the multiple factors that affect the service performance of the artificial joint. The experimental study was carried out on the change rule of mechanical behavior of the contact interface between the artificial joint of titanium alloy and cortical bone. The multi-factor is compression load, contact load, friction velocity, and lubrication environment, respectively. The results indicate that the friction coefficient, wear mass, and wear coefficient of Ti-6A1-4V titanium alloy decreased with the increasing of the compression load. The friction rate and the friction coefficient of Ti-6A1-4V titanium alloy decreased with the increasing of the contact load. The wear mass and friction coefficient of Ti-6A1-4V titanium alloy increased with the increasing of contact load. The lubrication effect is better with the increasing of lubricant concentration. Based on the observation of the SEM, the wear type influenced by compression load and friction rate is mainly abrasive wear and oxidation wear. The wear type influenced by contact load is mainly abrasive wear and adhesive wear. The wear type influenced by lubricants is mainly oxidation wear. When wear mass and wear coefficient are used as the criteria for evaluating friction and wear, the order of influential factors to friction and wear of Ti-6Al-4V titanium alloy plate is friction rate, compression load, contact load, and lubricant concentration. This research can provide a theoretical reference for the optimal manufacture of the artificial joint of titanium alloy and optimal rules of safe service conditions.


Subject(s)
Cortical Bone , Titanium , Friction , Alloys , Lubricants , Materials Testing , Surface Properties
3.
PLoS One ; 17(7): e0271301, 2022.
Article in English | MEDLINE | ID: mdl-35895673

ABSTRACT

Bone fracture is an extremely dangerous health risk to human. Actually, cortical bone is often subjected to the complicated loading patterns. The mechanical properties and deformation mechanism under the complicated loading pattern could provide a more precise understanding for the bone fracture. For this purpose, the mechanical response and multi-scale deformation mechanism of cortical bone material were investigated by in-situ experimental research using the compression-torsion coupling loads as an example. It was found that the torsion strength and shear modulus all decreased under the compression-torsion coupling loads than single torsion load. This indicated bone would suffer greater risk of fracture under the compression-torsion coupling loads. Based on in-situ observation, it was found that the rapid reduction of the anisotropy of bone material under the compression load was the potential influencing factor. Because of the redistribution of the principal strain and the variations of cracks propagation, the comprehensive fracture pattern containing both transverse and longitudinal fracture was shown under the coupling loads, and finally resulted in the reduction of the torsion properties. This research could provide new references for researches on mechanical properties of cortical bone material under complicated loading patterns.


Subject(s)
Cortical Bone , Fractures, Bone , Anisotropy , Biomechanical Phenomena , Humans , Stress, Mechanical
4.
Anim Sci J ; 90(8): 977-989, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31199032

ABSTRACT

The study compared the effects of selected proteins replacing fish meal in low-protein diets on piglets' growth performance, intestinal digestive physiology, and nitrogen digestion and metabolism. Five reduced CP, amino acid (AA)-supplemented diets containing 4% of either S50, HP300, concentrated degossypolized cottonseed protein (CDCP), P50, or fish meal were assigned to six pens with 11 pigs for a 28-day study period. Compared with fish meal, dietary proteins did not affect growth performance, apparent total tract digestibility (ATTD) of nutrients, serum hormone levels and biochemical parameters, apparent ileal digestibility (AID) of CP and most AA, colonic short-chain fatty acid (SCFA) contents, duodenal and ileal morphology, digestive enzyme activity, and pH in small intestine of piglets. However, HP300, CDCP, and P50 decreased (p < 0.05) fecal N excretion per weight gain. AID of Ile in S50 and HP300 and Glu in P50 were improved (p < 0.05), and AID of Gly in other proteins was reduced (p < 0.05). S50 and P50 lowered (p < 0.05) the contents of colonic isobutyric and isovaleric. S50 and HP300 reduced (p < 0.05) jejunal villus height. CDCP increased (p < 0.05) the pepsin activity in stomach. S50, HP300, and CDCP decreased (p < 0.05) pH in the proximal colon. Overall, the selected proteins could completely replace fish meal in low-protein diet without impairing piglets' growth via maintaining intestinal digestive physiology, and nitrogen digestion and metabolism.


Subject(s)
Diet, Protein-Restricted/veterinary , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Digestion/physiology , Fish Products , Intestines/physiology , Nitrogen/metabolism , Swine/growth & development , Swine/metabolism , Animals
5.
Materials (Basel) ; 11(10)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30340373

ABSTRACT

A new method of ultrasonic chemical mechanical polishing (CMP) combined with ultrasonic lapping is introduced to improve the machining performance of carbide silicon (SiC). To fulfill the method, an ultrasonic assisted machining apparatus is designed and manufactured. Comparative experiments with and without ultrasonic assisted vibration are conducted. According to the experimental results, the material removal rate (MRR) and surface generation are investigated. The results show that both ultrasonic lapping and ultrasonic CMP can decrease the two-body abrasion and reduce the peak-to-valley (PV) value of surface roughness, the effect of ultrasonic in lapping can contribute to the higher MRR and better surface quality for the following CMP. The ultrasonic assisted vibration in CMP can promote the chemical reaction, increase the MRR and improve the surface quality. The combined ultrasonic CMP with ultrasonic lapping achieved the highest MRR of 1.057 µm/h and lowest PV value of 0.474 µm. Therefore this sequent ultrasonic assisted processing method can be used to improve the material removal rate and surface roughness for the single crystal SiC wafer.

6.
Materials (Basel) ; 11(7)2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30021978

ABSTRACT

Effects of temperature and strain rate on the fracture behaviors of an Al-Zn-Mg-Cu alloy are investigated by isothermal uniaxial tensile experiments at a wide range of temperatures and strain rates, from room temperature (RT) to 400 °C and from 10-4 s-1 to 10-1 s⁻1, respectively. Generally, the elevation of temperature leads to the increasing of elongation to fracture and the reduction of peak stress, while higher strain rate results in the decreasing of elongation to fracture and the increasing of peak stress. Interestingly, we found that the coefficient of strain rate sensitivity (m-value) considerably rises at 200 °C and work of fracture (Wf) fluctuates drastically with the increase of strain rate at RT and 100 °C, both of which signify a non-uniform and unstable deformation state below 200 °C. A competition of work hardening (WH) and dynamic recrystallization (DRX) exists at 200 °C, making it serve as a transitional temperature. Below 200 °C, WH is the main deformation mechanism of flow stress, and DRX dominates the flow stress above 200 °C. It has been found that from RT to 200 °C, the main feature of microstructure is the generation of dimples and microvoids. Above 200 °C, the coalescence of dimples and microvoids mainly leads to the failure of specimen, while the phenomenon of typically equiaxed dimples and nucleation appear at 400 °C. The observations of microstructure are perfectly consistent with the related macroscopic results. The present work is able to provide a comprehensive understanding of flow stress of an Al-Zn-Mg-Cu alloy at a wide range of temperatures and strain rates, which will offer valuable information to the optimization of the hot forming process and structural design of the studied alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...