Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Atherosclerosis ; 392: 117506, 2024 May.
Article in English | MEDLINE | ID: mdl-38518516

ABSTRACT

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Subject(s)
Atherosclerosis , Cellular Senescence , Mice, Knockout , Proprotein Convertase 9 , RNA, Long Noncoding , Receptors, LDL , Animals , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Humans , Male , Female , Receptors, LDL/genetics , Receptors, LDL/metabolism , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Disease Models, Animal , Liver/metabolism , Liver/pathology , Mice , Plaque, Atherosclerotic , Mice, Inbred C57BL , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Mitochondria/metabolism , Signal Transduction , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics
2.
Cells ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38334627

ABSTRACT

Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes.


Subject(s)
Cullin Proteins , Ubiquitin , Ubiquitin/metabolism , Cullin Proteins/metabolism , Ubiquitination , Ubiquitin-Protein Ligases/metabolism
3.
J Biochem Mol Toxicol ; 38(1): e23556, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37867445

ABSTRACT

Fraxetin, a natural compound extracted from the Chinese herb Cortex Fraxini, is reported to boast extensive antitumor properties in various cancers. However, whether fraxetin exhibited an anticancer effect on bladder cancer remains unknown. In this study, cell counting kit-8 was utilized to detect cell viability. Flow cytometry analysis was performed for cell apoptosis analysis. Western blot analysis and real-time PCR were used to ascertain gene expression analysis. A mouse bladder cancer xenograft model was established and subjected to fraxetin treatment. Fraxetin reduced the viability of bladder cancer cells, induced apoptosis in vitro, and inhibited the growth of bladder cancer in vivo. Fraxetin inhibited the Akt pathway in J82 cells. In conclusion, the growth inhibitory properties of fraxetin against bladder cancer may be mediated via an Akt inhibitory effect and cell apoptosis promotion.


Subject(s)
Coumarins , Proto-Oncogene Proteins c-akt , Urinary Bladder Neoplasms , Mice , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Cell Proliferation , Apoptosis , Urinary Bladder Neoplasms/metabolism , Cell Line, Tumor
4.
J Nanobiotechnology ; 21(1): 352, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770932

ABSTRACT

BACKGROUND: Macrophages are highly plastic innate immune cells that play key roles in host defense, tissue repair, and homeostasis maintenance. In response to divergent stimuli, macrophages rapidly alter their functions and manifest a wide polarization spectrum with two extremes: M1 or classical activation and M2 or alternative activation. Extracellular vesicles (EVs) secreted from differentially activated macrophages have been shown to have diverse functions, which are primarily attributed to their microRNA cargos. The role of protein cargos in these EVs remains largely unexplored. Therefore, in this study, we focused on the protein cargos in macrophage-derived EVs. RESULTS: Naïve murine bone marrow-derived macrophages were treated with lipopolysaccharide or interlukin-4 to induce M1 or M2 macrophages, respectively. The proteins of EVs and their parental macrophages were subjected to quantitative proteomics analyses, followed by bioinformatic analyses. The enriched proteins of M1-EVs were involved in proinflammatory pathways and those of M2-EVs were associated with immunomodulation and tissue remodeling. The signature proteins of EVs shared a limited subset of the proteins of their respective progenitor macrophages, but they covered many of the typical pathways and functions of their parental cells, suggesting their respective M1-like and M2-like phenotypes and functions. Experimental examination validated that protein cargos in M1- or M2-EVs induced M1 or M2 polarization, respectively. More importantly, proteins in M1-EVs promoted viability, proliferation, and activation of T lymphocytes, whereas proteins in M2-EVs potently protected the tight junction structure and barrier integrity of epithelial cells from disruption. Intravenous administration of M2-EVs in colitis mice led to their accumulation in the colon, alleviation of colonic inflammation, promotion of M2 macrophage polarization, and improvement of gut barrier functions. Protein cargos in M2-EVs played a key role in their protective function in colitis. CONCLUSION: This study has yielded a comprehensive unbiased dataset of protein cargos in macrophage-derived EVs, provided a systemic view of their potential functions, and highlighted the important engagement of protein cargos in the pathophysiological functions of these EVs.


Subject(s)
Colitis , Extracellular Vesicles , Animals , Mice , Macrophages/metabolism , Phagocytosis , Extracellular Vesicles/metabolism , Colitis/metabolism , Inflammation/metabolism
5.
Front Surg ; 10: 1143219, 2023.
Article in English | MEDLINE | ID: mdl-37123545

ABSTRACT

Bladder cancer is the most common malignant tumor of urinary system worldwide. Approximately 75% of patients with bladder cancer present with non-muscle-invasive bladder cancer (NMIBC), which is effectively managed with transurethral resection of bladder tumor (TURBT). For refractory high risk NMIBC, patients are typically treated by radical cystectomy (RC). TURBT deserves further evaluation. Growing evidence suggests that repeated TURBT-based bladder-sparing approaches may improve oncological outcomes and quality of life in highly selected patients. Novel imaging techniques and biomarkers may aid in patients selection and postoperative surveillance. With growing interest in adding immunotherapy to refractory bladder cancer, TURBT based approaches enable the bladder preservation therapy for high risk NMIBC. Here we summarize the current landscape, biomarkers for surveillance, and future directions for applying TURBT-based bladder preservation therapy.

6.
J Biol Chem ; 299(6): 104777, 2023 06.
Article in English | MEDLINE | ID: mdl-37142222

ABSTRACT

Mycobacterium tuberculosis (Mtb) WhiB3 is an iron-sulfur cluster-containing transcription factor belonging to a subclass of the WhiB-Like (Wbl) family that is widely distributed in the phylum Actinobacteria. WhiB3 plays a crucial role in the survival and pathogenesis of Mtb. It binds to the conserved region 4 of the principal sigma factor (σA4) in the RNA polymerase holoenzyme to regulate gene expression like other known Wbl proteins in Mtb. However, the structural basis of how WhiB3 coordinates with σA4 to bind DNA and regulate transcription is unclear. Here we determined crystal structures of the WhiB3:σA4 complex without and with DNA at 1.5 Å and 2.45 Å, respectively, to elucidate how WhiB3 interacts with DNA to regulate gene expression. These structures reveal that the WhiB3:σA4 complex shares a molecular interface similar to other structurally characterized Wbl proteins and also possesses a subclass-specific Arg-rich DNA-binding motif. We demonstrate that this newly defined Arg-rich motif is required for WhiB3 binding to DNA in vitro and transcriptional regulation in Mycobacterium smegmatis. Together, our study provides empirical evidence of how WhiB3 regulates gene expression in Mtb by partnering with σA4 and engaging with DNA via the subclass-specific structural motif, distinct from the modes of DNA interaction by WhiB1 and WhiB7.


Subject(s)
Bacterial Proteins , Models, Molecular , Mycobacterium tuberculosis , Transcription Factors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial/physiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Structure, Quaternary , Sigma Factor/chemistry , Sigma Factor/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism
7.
J Natl Cancer Inst Monogr ; 2023(61): 149-157, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37139978

ABSTRACT

The overall goal of the annual Transdisciplinary Research in Energetics and Cancer (TREC) Training Workshop is to provide transdisciplinary training for scientists in energetics and cancer and clinical care. The 2022 Workshop included 27 early-to-mid career investigators (trainees) pursuing diverse TREC research areas in basic, clinical, and population sciences. The 2022 trainees participated in a gallery walk, an interactive qualitative program evaluation method, to summarize key takeaways related to program objectives. Writing groups were formed and collaborated on this summary of the 5 key takeaways from the TREC Workshop. The 2022 TREC Workshop provided a targeted and unique networking opportunity that facilitated meaningful collaborative work addressing research and clinical needs in energetics and cancer. This report summarizes the 2022 TREC Workshop's key takeaways and future directions for innovative transdisciplinary energetics and cancer research.


Subject(s)
Medicine , Neoplasms , Humans , Interdisciplinary Research , Neoplasms/diagnosis , Neoplasms/therapy , Neoplasms/epidemiology , Program Evaluation/methods , Research Personnel/education
9.
Atherosclerosis ; 350: 9-18, 2022 06.
Article in English | MEDLINE | ID: mdl-35462240

ABSTRACT

BACKGROUND AND AIMS: Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. METHODS AND RESULTS: Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. CONCLUSIONS: Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Animals , Atherosclerosis/pathology , Endothelial Cells/metabolism , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Proprotein Convertase 9/metabolism
10.
Front Cardiovasc Med ; 9: 818662, 2022.
Article in English | MEDLINE | ID: mdl-35360009

ABSTRACT

We have previously identified a novel atherosclerosis quantitative trait locus (QTL), Arch atherosclerosis 5 (Aath5), on mouse chromosome 10 by three-way QTL analyses between Apoe -/- mice on a DBA/2J, 129S6 and C57BL/6J background. The DBA/2J haplotype at the Aath5 locus was associated with smaller plaque size. One of the candidate genes underlying Aath5 was Stabilin-2 (Stab2), which encodes a clearance receptor for hyaluronan (HA) predominantly expressed in liver sinusoidal endothelial cells (LSECs). However, the role of Stab2 in atherosclerosis is unknown. A congenic line of Apoe -/- mice carrying Aath5 covering the Stab2 DBA allele on a background of 129S6 confirmed the small reductions of atherosclerotic plaque development. To further determine whether Stab2 is an underlying gene for Aath5, we generated Stab2 -/- Apoe -/- mice on a C57BL/6J background. When fed with a Western diet for 8 weeks, Stab2 -/- Apoe -/- males developed approximately 30% smaller plaques than Stab2 +/+ Apoe -/- mice. HA was accumulated in circulation but not in major organs in the Stab2 deficient mice. STAB2-binding molecules that are involved in atherosclerosis, including acLDL, apoptotic cells, heparin and vWF were not likely the direct cause of the protection in the Stab2 -/- Apoe -/- males. These data indicate that reduction of Stab2 is protective against atherosclerotic plaque development, and that Stab2 is a contributing gene underlying Aath5, although its effect is small. To test whether non-synonymous amino acid changes unique to DBA/2J affect the function of STAB2 protein, we made HEK293 cell lines expressing STAB2129 or STAB2DBA proteins, as well as STAB2129 proteins carrying each of five DBA-unique replacements that have been predicted to be deleterious. These mutant cells were capable of internalizing 125I -HA and DiI-acLDL similarly to the control cells. These results indicate that the amino acid changes unique to DBA/2J are not affecting the function of STAB2 protein, and support our previous observation that the reduced transcription of Stab2 in the liver sinusoid as a consequence of the insertion of a viral-derived sequence, intracisternal A particle, is the primary contributor to the athero-protection conferred by the DBA/2J allele.

11.
iScience ; 24(11): 103337, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34816100

ABSTRACT

Lipopolysaccharides (LPSs) cause lethal endotoxemia if not rapidly cleared from blood circulation. Liver sinusoidal endothelial cells (LSEC) systemically clear LPS by unknown mechanisms. We discovered that LPS clearance through LSEC involves endocytosis and lysosomal inactivation via Stabilin-1 and 2 (Stab1 and Stab2) but does not involve TLR4. Cytokine production was inversely related to clearance/endocytosis of LPS by LSEC. When exposed to LPS, Stabilin double knockout mice (Stab DK) and Stab1 KO, but not Stab2 KO, showed significantly enhanced systemic inflammatory cytokine production and early death compared with WT mice. Stab1 KO is not significantly different from Stab DK in circulatory LPS clearance, LPS uptake and endocytosis by LSEC, and cytokine production. These data indicate that (1) Stab1 receptor primarily facilitates the proactive clearance of LPS and limits TLR4-mediated inflammation and (2) TLR4 and Stab1 are functionally opposing LPS receptors. These findings suggest that endotoxemia can be controlled by optimizing LPS clearance by Stab1.

12.
Theranostics ; 11(19): 9311-9330, 2021.
Article in English | MEDLINE | ID: mdl-34646372

ABSTRACT

Aberrant activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome drives the development of many complex inflammatory diseases, such as obesity, Alzheimer's disease, and atherosclerosis. However, no medications specifically targeting the NLRP3 inflammasome have become clinically available. Therefore, we aim to identify new inhibitors of the NLRP3 inflammasome in this study. Methods: Vesicle-like nanoparticles (VLNs) were extracted from garlic chives and other Allium vegetables and their effects on the NLRP3 inflammasome were evaluated in primary macrophages. After garlic chive-derived VLNs (GC-VLNs) were found to exhibit potent anti-NLRP3 inflammasome activity in cell culture, such function was further assessed in a murine acute liver injury disease model, as well as in diet-induced obesity. Finally, GC-VLNs were subjected to omics analysis to identify the active components with anti-NLRP3 inflammasome function. Results: GC-VLNs are membrane-enclosed nanoparticles containing lipids, proteins, and RNAs. They dose-dependently inhibit pathways downstream of NLRP3 inflammasome activation, including caspase-1 autocleavage, cytokine release, and pyroptotic cell death in primary macrophages. The inhibitory effects of GC-VLNs on the NLRP3 inflammasome are specific, considering their marginal impact on activation of other inflammasomes. Local administration of GC-VLNs in mice alleviates NLRP3 inflammasome-mediated inflammation in chemical-induced acute liver injury. When administered orally or intravenously, GC-VLNs accumulate in specific tissues and suppress activation of the NLRP3 inflammasome and chronic inflammation in diet-induced obese mice. The phospholipid 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) in GC-VLNs has been identified to inhibit NLRP3 inflammasome activation. Conclusions: Identification of GC-VLNs and their active component DLPC as potent inflammasome inhibitors provides new therapeutic candidates in the treatment of NLRP3 inflammasome-driven diseases.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , China , Chive/metabolism , Cytokines/metabolism , Drug Evaluation, Preclinical/methods , Extracellular Vesicles/metabolism , Garlic/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nanoparticles/chemistry , Obesity , Phagocytosis
13.
Front Physiol ; 12: 693067, 2021.
Article in English | MEDLINE | ID: mdl-34220553

ABSTRACT

Cellular senescence is a stable form of cell cycle arrest in response to various stressors. While it serves as an endogenous pro-resolving mechanism, detrimental effects ensue when it is dysregulated. In this review, we introduce recent advances for cellular senescence and inflammaging, the underlying mechanisms for the reduction of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned from p16 reporter mice, and the development of machine learning algorithms in cellular senescence. We focus on pathobiological insights underlying cellular senescence of the vascular endothelium, a critical interface between blood and all tissues. Common causes and hallmarks of endothelial senescence are highlighted as well as recent advances in endothelial senescence. The regulation of cellular senescence involves multiple mechanistic layers involving chromatin, DNA, RNA, and protein levels. New targets are discussed including the roles of long noncoding RNAs in regulating endothelial cellular senescence. Emerging small molecules are highlighted that have anti-aging or anti-senescence effects in age-related diseases and impact homeostatic control of the vascular endothelium. Lastly, challenges and future directions are discussed including heterogeneity of endothelial cells and endothelial senescence, senescent markers and detection of senescent endothelial cells, evolutionary differences for immune surveillance in mice and humans, and long noncoding RNAs as therapeutic targets in attenuating cellular senescence. Accumulating studies indicate that cellular senescence is reversible. A better understanding of endothelial cellular senescence through lifestyle and pharmacological interventions holds promise to foster a new frontier in the management of cardiovascular disease risk.

15.
Acta Pharmacol Sin ; 42(12): 2046-2057, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33623121

ABSTRACT

Nuclear factor kappa B (NF-κB) activation contributes to many vascular inflammatory diseases. The present study tested the hypothesis that microRNA-17-3p (miR-17-3p) suppresses the pro-inflammatory responses via NF-κB signaling in vascular endothelium. Human umbilical vein endothelial cells (HUVECs), transfected with or without miR-17-3p agomir/antagomir, were exposed to lipopolysaccharide (LPS), and the inflammatory responses were determined. The cellular target of miR-17-3p was examined with dual-luciferase reporter assay. Mice were treated with miR-17-3p agomir and the degree of LPS-induced inflammation was determined. In HUVECs, LPS caused upregulation of miR-17-3p. Overexpression of miR-17-3p in HUVECs inhibited NIK and IKKß binding protein (NIBP) protein expression and suppressed LPS-induced phosphorylation of inhibitor of kappa Bα (IκBα) and NF-κB-p65. The reduced NF-κB activity was paralleled by decreased protein levels of NF-κB-target gene products including pro-inflammatory cytokine [interleukin 6], chemokines [interleukin 8 and monocyte chemoattractant protein-1] and adhesion molecules [vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and E-selectin]. Immunostaining revealed that overexpression of miR-17-3p reduced monocyte adhesion to LPS-stimulated endothelial cells. Inhibition of miR-17-3p with antagomir has the opposite effect on LPS-induced inflammatory responses in HUVECs. The anti-inflammatory effect of miR-17-3p was mimicked by NIBP knockdown. In mice treated with LPS, miR-17-3p expression was significantly increased. Systemic administration of miR-17-3p for 3 days suppressed LPS-induced NF-κB activation and monocyte adhesion to endothelium in lung tissues of the mice. In conclusion, miR-17-3p inhibits LPS-induced NF-κB activation in HUVECs by targeting NIBP. The findings therefore suggest that miR-17-3p is a potential therapeutic target/agent in the management of vascular inflammatory diseases.


Subject(s)
Endothelium, Vascular/metabolism , I-kappa B Kinase/metabolism , Inflammation/metabolism , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factor RelA/metabolism , Animals , Antagomirs/pharmacology , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/chemically induced , Lipopolysaccharides , Male , Mice , NF-KappaB Inhibitor alpha/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , NF-kappaB-Inducing Kinase
16.
Redox Biol ; 40: 101863, 2021 04.
Article in English | MEDLINE | ID: mdl-33508742

ABSTRACT

Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated ß-galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in diet-induced obese mice. Furthermore, Meg3 expression is elevated in human nonalcoholic fatty livers and nonalcoholic steatohepatitis livers, which positively correlates with the expression of CDKN2A encoding p16, an important hallmark of cellular senescence. Meg3 knockdown potentiates obesity-induced insulin resistance and impairs glucose homeostasis. Insulin signaling is reduced by Meg3 knockdown in the liver and, to a lesser extent, in the skeletal muscle, but not in the visceral fat of obese mice. We found that the attenuation of cellular senescence of hepatic endothelium by ablating p53 expression in vascular endothelium can restore impaired glucose homeostasis and insulin signaling in obesity. In conclusion, our data demonstrate that cellular senescence of hepatic endothelium promotes obesity-induced insulin resistance, which is tightly regulated by the expression of Meg3. Our results suggest that manipulation of Meg3 expression may represent a novel approach to managing obesity-associated hepatic endothelial senescence and insulin resistance.


Subject(s)
Glucose , RNA, Long Noncoding , Cellular Senescence/genetics , Endothelial Cells , Endothelium , Homeostasis , Humans , Insulin , Liver , Obesity/genetics , RNA, Long Noncoding/genetics , Signal Transduction
17.
Elife ; 102021 01 08.
Article in English | MEDLINE | ID: mdl-33416495

ABSTRACT

Endothelial cell (EC) activation is an early hallmark in the pathogenesis of chronic vascular diseases. MicroRNA-181b (Mir181b) is an important anti-inflammatory mediator in the vascular endothelium affecting endotoxemia, atherosclerosis, and insulin resistance. Herein, we identify that the drug methotrexate (MTX) and its downstream metabolite adenosine exert anti-inflammatory effects in the vascular endothelium by targeting and activating Mir181b expression. Both systemic and endothelial-specific Mir181a2b2-deficient mice develop vascular inflammation, white adipose tissue (WAT) inflammation, and insulin resistance in a diet-induced obesity model. Moreover, MTX attenuated diet-induced WAT inflammation, insulin resistance, and EC activation in a Mir181a2b2-dependent manner. Mechanistically, MTX attenuated cytokine-induced EC activation through a unique adenosine-adenosine receptor A3-SMAD3/4-Mir181b signaling cascade. These findings establish an essential role of endothelial Mir181b in controlling vascular inflammation and that restoring Mir181b in ECs by high-dose MTX or adenosine signaling may provide a potential therapeutic opportunity for anti-inflammatory therapy.


Subject(s)
Adenosine/metabolism , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Methotrexate/pharmacology , MicroRNAs/metabolism , Animals , Arthritis, Rheumatoid/immunology , Female , Humans , Inflammation/immunology , Male , Mice , Signal Transduction/drug effects
18.
J Med Case Rep ; 14(1): 244, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33317618

ABSTRACT

INTRODUCTION: Squamous cell carcinoma of the renal pelvis is a rare neoplasm, accounting for less than 0.8% of malignant renal tumors. Chronic irritation is believed to be the primary pathogenic cause for squamous cell carcinoma of the renal pelvis. The most frequently reported cases of squamous cell carcinoma of the renal pelvis generally present with hydronephrosis, pyelonephritis, or nephrolithiasis. The skin of the flank is a very uncommon site of clinical presentation. Here, we report an exceedingly rare case of squamous cell carcinoma of the renal pelvis presenting as skin invasion of the flank. CASE PRESENTATION: A 66-year-old Han Chinese man consulted our hospital because of a right lumbar skin lesion lasting more than 3 months. His physical examination revealed that he had a palpable mass about 6.0 cm × 5.0 cm in size at the posterior axillary line in the right low back with skin ulceration 3 mm in diameter and exudation on it. Magnetic resonance imaging showed hydronephrosis of the right kidney and plaque-like abnormal signal in the middle portion of the kidney. The patient underwent a right nephrectomy. The sinus tract formation between the ulcerative skin in the right low back and the middle portion of the right kidney could be found. The distended kidney could not be excised entirely for tight adhesion. Pathological examination showed moderately differentiated renal squamous cell carcinoma with invasion of the renal parenchyma and perirenal adipose tissue. CONCLUSION: It is extremely rare for renal squamous cell carcinoma to present as skin invasion. Recurrent percutaneous nephrolithotomy may be a risk factor for squamous cell carcinoma of the renal pelvis. The possibility of renal squamous cell carcinoma should be kept in mind in patients who have hydronephrosis, nephrolithiasis, or chronic pyelonephritis for a long time or with renal anomalies. More radiological examinations are suggested for such patients.


Subject(s)
Carcinoma, Renal Cell , Carcinoma, Squamous Cell , Kidney Neoplasms , Aged , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/surgery , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/surgery , Kidney Pelvis/diagnostic imaging , Kidney Pelvis/surgery , Male , Nephrectomy
19.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854424

ABSTRACT

Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Copper/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/physiology , Nuclear Proteins/metabolism , Proteomics/methods , Autophagy , Binding Sites , HEK293 Cells , Humans , Microtubule-Associated Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Mitophagy , Nuclear Proteins/chemistry , Oxidative Stress , Phosphorylation , Signal Transduction/drug effects
20.
Am J Physiol Cell Physiol ; 318(6): C1200-C1213, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32374676

ABSTRACT

The liver is the central metabolic hub for carbohydrate, lipid, and protein metabolism. It is composed of four major types of cells, including hepatocytes, endothelial cells (ECs), Kupffer cells, and stellate cells. Hepatic ECs are highly heterogeneous in both mice and humans, representing the second largest population of cells in liver. The majority of them line hepatic sinusoids known as liver sinusoidal ECs (LSECs). The structure and biology of LSECs and their roles in physiology and liver disease were reviewed recently. Here, we do not give a comprehensive review of LSEC structure, function, or pathophysiology. Instead, we focus on the recent progress in LSEC research and other hepatic ECs in physiology and nonalcoholic fatty liver disease and other hepatic fibrosis-related conditions. We discuss several current areas of interest, including capillarization, scavenger function, autophagy, cellular senescence, paracrine effects, and mechanotransduction. In addition, we summarize the strengths and weaknesses of evidence for the potential role of endothelial-to-mesenchymal transition in liver fibrosis.


Subject(s)
Capillaries/metabolism , Endothelial Cells/metabolism , Liver Cirrhosis/metabolism , Liver/blood supply , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Autophagy , Capillaries/pathology , Cell Differentiation , Cell Proliferation , Cellular Senescence , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition , Humans , Inflammation Mediators/metabolism , Liver Cirrhosis/pathology , Mechanotransduction, Cellular , Non-alcoholic Fatty Liver Disease/pathology , Paracrine Communication , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...