Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
J Hazard Mater ; 479: 135573, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39236537

ABSTRACT

Fusarium graminearum, the primary pathogen responsible for wheat Fusarium head blight, can induce pulmonary damage through its spores. However, the detailed mechanism by which these spores cause intestinal injury is not yet fully understood. This study aimed to investigate the impact of exposure to fungal spores on the intestinal microbiota using a mice model that mimics the effects of fusarium graminearum spores on the gut microbiota and its metabolic profile. The study utilized 16S rRNA sequencing and metabolomics methodologies to analyze the contents of the cecum and feces in mice. The results showed that exposure to fungal spores led to significant changes in the composition of the intestinal microbiota in mice, characterized by an increase in Akkermansia and Staphylococcus populations. A non-targeted metabolomics analysis identified 316 metabolites associated with various metabolic pathways, particularly galactose metabolism. Pre-exposure to antibiotics before fungal spore exposure resulted in a decrease in the metabolic capacity of the intestinal microbiota in mice. This research demonstrates that fusarium graminearum spores can disrupt the intestinal microbiota and metabolome via the lung-gut axis. These findings provide valuable insights into the intestinal damage caused by fungal spores and offer important support for the development of therapeutic strategies for intestinal diseases.

2.
Anal Bioanal Chem ; 416(22): 4999-5012, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39093417

ABSTRACT

Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.


Subject(s)
Avena , Food Contamination , Limit of Detection , Tandem Mass Spectrometry , Trichothecenes , Avena/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Trichothecenes/analysis , Food Contamination/analysis , Gels/chemistry , Reproducibility of Results
3.
Talanta ; 279: 126618, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39116729

ABSTRACT

Foodborne illnesses caused by Salmonella and Staphylococcus aureus are a significant public health concern, leading to societal and economic repercussions. It is important to develop a simple and straightforward bacteria detection and identification method. A triple-probe multiplex rolling circle amplification technique has been developed to simultaneously detect Salmonella Typhimurium and S. aureus. This method utilizes fluorophore-labeled long padlock probes targeting S. Typhimurium invA and S. aureus glnA specific genes, along with a pH-based detection approach for direct visual identification. The multiplex hyperbranched saltatory rolling circle amplification assay at 30 °C has showed promising results with synthetic targets within 30 min and real bacteria within 2 h after establishing the detection settings. The assay is specific for S. aureus and S. Typhimurium, with a limit of detection of 39 µM for fluorescence and 78 µM for colorimetric. In the simulative test of this method for the detection of S. Typhimurium and S. aureus in milk, the limit of detection for the fluorescence signal after 2 h of amplification was 10 CFU/mL and 5 CFU/mL, respectively. The detection method was evaluated to be stable enough to detect pathogen for 3.29 months. Consequently, this triple-probe-multiplex rolling circle amplification method displays notable specificity, sensitivity, as well as ease of interpretation when testing food samples for harmful pathogens.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Salmonella typhimurium , Staphylococcus aureus , Nucleic Acid Amplification Techniques/methods , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/genetics , Food Microbiology/methods , Milk/microbiology , Animals , Limit of Detection
4.
Toxicology ; 508: 153928, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153657

ABSTRACT

Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.


Subject(s)
Depsipeptides , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Trichothecenes , ras Proteins , Trichothecenes/toxicity , Humans , Caco-2 Cells , Proto-Oncogene Proteins c-akt/metabolism , Depsipeptides/toxicity , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , ras Proteins/metabolism , ras Proteins/antagonists & inhibitors , Apoptosis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Reactive Oxygen Species/metabolism , Intestines/drug effects , Cell Survival/drug effects
5.
J Agric Food Chem ; 72(32): 18146-18154, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39075026

ABSTRACT

Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 µg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 µg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.


Subject(s)
Enzyme Stability , Peptides , Zea mays , Zearalenone , Zearalenone/chemistry , Zearalenone/metabolism , Zea mays/chemistry , Zea mays/metabolism , Zea mays/genetics , Peptides/chemistry , Peptides/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/chemistry , Lactones/chemistry , Lactones/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics
6.
Toxins (Basel) ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057930

ABSTRACT

A total of 769 wheat kernels collected from six provinces in China were analyzed for beauvericin (BEA) and four enniatins (ENNs), namely, ENA, ENA1, ENB and ENB1, using a solid phase extraction (SPE) technique with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results show that the predominant toxin was BEA, which had a maximum of 387.67 µg/kg and an average of 37.69 µg/kg. With regard to ENNs, the prevalence and average concentrations of ENB and ENB1 were higher than those of ENA and ENA1. The geographical distribution of BEA and ENNs varied. Hubei and Shandong exhibited the highest and lowest positive rates of BEA and ENNs (13.46% and 87.5%, respectively). However, no significant difference was observed among these six provinces. There was a co-occurrence of BEA and ENNs, and 42.26% of samples were simultaneously detected with two or more toxins. Moreover, a significant linear correlation in concentrations was observed between the four ENN analogs (r range: 0.75~0.96, p < 0.05). This survey reveals that the contamination and co-contamination of BEA and ENNs in Chinese wheat kernels were very common.


Subject(s)
Depsipeptides , Food Contamination , Triticum , Depsipeptides/analysis , Triticum/chemistry , China , Food Contamination/analysis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Mycotoxins/analysis , Solid Phase Extraction
7.
Foods ; 13(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063328

ABSTRACT

Agricultural food commodities are highly susceptible to contamination by fungi and mycotoxins, which cause great economic losses and threaten public health. New technologies such as gamma ray irradiation, ultraviolet radiation, electron beam irradiation, microwave irradiation, pulsed light, pulsed electric fields, plasma, ozone, etc. can solve the problem of fungal and mycotoxin contamination which cannot be effectively solved by traditional food processing methods. This paper summarizes recent advancements in emerging food decontamination technologies used to control various fungi and their associated toxin contamination in food. It discusses the problems and challenges faced by the various methods currently used to control mycotoxins, looks forward to the new trends in the development of mycotoxin degradation methods in the future food industry, and proposes new research directions.

8.
J Hazard Mater ; 476: 134902, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38909467

ABSTRACT

To investigate the metabolic transformation of cyclopiazonic acid (CPA) in the liver of different species and to supplement accurate risk assessment information, the metabolism of CPA in liver microsomes from four animals and humans was studied using the ultra-high-performance liquid chromatography-quadrupole/time-of-flight method. The results showed that a total of four metabolites were obtained, and dehydrogenation, hydroxylation, methylation, and glucuronidation were identified as the main metabolic pathways of CPA. Rat liver microsomes exhibited the highest metabolic capacity for CPA, with dehydrogenated (C20H18N2O3) and glucuronic acid-conjugated (C26H28N2O10) metabolites identified in all liver microsomes except chicken, indicating significant species metabolic differences. Moreover, C20H18N2O3 was only detected in the incubation system with cytochromes P450 3A4 (CYP3A4). The hydroxylated (C20H20N2O4) and methylated (C21H22N2O3) metabolites were detected in all incubation systems except for the CYP2C9, with CYP3A4 demonstrating the strongest metabolic capacity. The "cocktail" probe drug method showed that CPA exhibited a moderate inhibitory effect on the CYP3A4 (IC50 value = 8.658 µM), indicating that the substrate had a negative effect on enzyme activity. Our results provide new insights to understand the biotransformation profile of CPA in animals and humans.


Subject(s)
Indoles , Microsomes, Liver , Microsomes, Liver/metabolism , Animals , Humans , Indoles/metabolism , Chromatography, High Pressure Liquid , Rats , Chickens/metabolism , Male , Dogs , Mass Spectrometry , Rats, Sprague-Dawley , Biotransformation , Mice
9.
Int J Biol Macromol ; 272(Pt 1): 132834, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838885

ABSTRACT

The development of novel packaging materials with antimicrobial properties is crucial in preventing the microbial-induced spoilage of fruits, vegetables, and foodborne illnesses. In this study, homojunction g-C3N4 (HCN) photocatalysts with excellent photocatalytic performance were incorporated into a matrix consisting of pullulan/chitosan (Pul/CS). These photocatalysts were then electrostatically spun onto polylactic acid (PLA) films to fabricate PLA@Pul/CS/HCN nanofibrous composite films. The design of the bilayer films aimed to combine the physical properties of PLA film with the excellent antibacterial properties of nanofiber films, thereby achieving synergistic advantages. The incorporation of the HCN photocatalysts resulted in enhanced hydrophobicity, barrier function, and mechanical properties of the composite films. Under visible light irradiation, the PLA@Pul/CS/HCN films exhibited approximately 3.43 log and 3.11 log reductions of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), respectively, within 2 h. The excellent antimicrobial performance could be attributed to the synergistic effect of CS and the release of reactive oxygen species (ROS) from HCN. Moreover, the strawberries packaged in the PLA@Pul/CS/HCN film demonstrated diminished quality degradation and a prolonged shelf life following visible light irradiation treatment. This study will provide new insights into the exploration of safe and efficient antimicrobial food packaging.


Subject(s)
Chitosan , Food Packaging , Fruit , Glucans , Light , Polyesters , Glucans/chemistry , Glucans/pharmacology , Polyesters/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Fruit/chemistry , Food Packaging/methods , Food Preservation/methods , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Fragaria/microbiology , Nanofibers/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Graphite , Nitrogen Compounds
10.
Toxics ; 12(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38922075

ABSTRACT

Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001-0.5 µg/L and 0.002-1 µg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7-116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4-129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility.

11.
Toxics ; 12(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38787115

ABSTRACT

With increasing health awareness and the accelerating pace of life, whole-grain prepared foods have gained popularity due to their health benefits and convenience. However, the potential risk of type B trichothecene toxins has also increased, and these mycotoxins in such foods are rarely regulated. In this study, a quantitative method combining a single-valve dual-column automatic online solid-phase extraction system with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the first time using restricted-access media columns. This method can simultaneously determine trace residues of seven type B trichothecenes within 15 min. The method is convenient, sensitive (limit of detection and quantification of 0.05-0.6 µg/kg and 0.15-2 µg/kg, respectively), accurate (recovery rates of 90.3%-106.6%, relative standard deviation < 4.3%), and robust (>1000 times). The established method was applied to 160 prepared food samples of eight categories sold in China. At least one toxin was detected in 70% of the samples. Whole-wheat dumpling wrappers had the highest contamination rate (95%) and the highest total content of type B trichothecenes in a single sample (2077.3 µg/kg). Exposure risk assessment indicated that the contamination of whole-grain prepared foods has been underestimated. The total health risk index of whole-wheat dumpling wrappers, which are susceptible to deoxynivalenol, reached 136.41%, posing a significant threat to human health. Effective measures urgently need to be taken to control this risk.

12.
Food Chem ; 453: 139639, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759442

ABSTRACT

This study reports the fabrication of three-dimensional gold nanocrystals as sensing material in the presence of l-glutathion and high-performance aptamer with 20 bases of α-amanitin via truncation and optimization of along aptamer. The resulting maple leaf-like gold nanocrystal (ML-Au) exhibits an improved catalytic activity due to more exposed high-index facets. The use of truncated aptamer increases the sensitivity by 15 times and reduces the reaction time by two times compared with those of original aptamer. An α-amanitin electrochemical biosensor constructed by integrating ML-Au nanocrystals with truncated aptamer exhibits high sensitivity, selectivity and rapidity. An increase of the α-amanitin concentration in the range of 1 × 10-14-1 × 10-9 M causes a linear decrease in the amperometric current with a limit of detection of 2.9 × 10-15 M (S/N = 3). The proposed analytical method is satisfactorily used for electrochemical sensing of α-amanitin in urine and wild mushroom samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Metal Nanoparticles , Gold/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Agaricales/chemistry , Humans
13.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557103

ABSTRACT

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Subject(s)
Depsipeptides , Mycotoxins , Phosphatidylinositol 3-Kinases , Trichothecenes , Humans , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Hep G2 Cells , Mycotoxins/toxicity , Mycotoxins/analysis
14.
J Agric Food Chem ; 72(17): 10046-10054, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648503

ABSTRACT

Poisonous mushrooms containing α-amatoxin can be lethal, making it imperative to develop a rapid and sensitive detection method for α-amatoxin. Utilizing the DNA tetrahedral structure as its foundation, the aptamer allows controlled density and orientation. Consequently, we designed aptamer tetrahedral functionalized magnetic beads that specifically target α-amanitin to release complementary DNA (C-DNA) strands. These strands were then employed as primers to initiate rolling circle amplification (RCA) with fluorescent dyes. The combination of SYBR Green I detection probes facilitated the amplification of the detection signal, enhancing the detection sensitivity of the aptasensor. The calculated detection limit was determined to be 3 ng/mL, a magnitude lower than that of other aptasensors by 2 orders of magnitude. The aptasensor integrates the advantages of high sensitivity and specificity, offering a simple and reliable rapid detection method for α-amanitin analysis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Limit of Detection , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Alpha-Amanitin/chemistry , Nanostructures/chemistry , DNA/chemistry , Agaricales/chemistry
15.
Int Immunopharmacol ; 133: 112074, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615383

ABSTRACT

The tumor microenvironment plays a vital role in glioblastoma growth and invasion. PD-1 and PD-L1 modulate the immunity in the brain tumor microenvironment. However, the underlying mechanisms remain unclear. In the present study, in vivo and in vitro experiments were conducted to reveal the effects of PD-1/PD-L1 on the crosstalk between microglia and glioma. Results showed that glioma cells secreted PD-L1 to the peritumoral areas, particularly microglia containing highly expressed PD-1. In the early stages of glioma, microglia mainly polarized into the pro-inflammatory subtype (M1). Subsequently, the secreted PD-L1 accumulated and bound to PD-1 on microglia, facilitating their polarization toward the microglial anti-inflammatory (M2) subtype primarily via the STAT3 signaling pathway. The role of PD-1/PD-L1 in M2 polarization of microglia was partially due to PD-1/PD-L1 depletion or application of BMS-1166, a novel inhibitor of PD-1/PD-L1. Consistently, co-culturing with microglia promoted glioma cell growth and invasion, and blocking PD-1/PD-L1 significantly suppressed these processes. Our findings reveal that the PD-1/PD-L1 axis engages in the microglial M2 polarization in the glioma microenvironment and promotes tumor growth and invasion.


Subject(s)
B7-H1 Antigen , Brain Neoplasms , Glioma , Microglia , Programmed Cell Death 1 Receptor , Animals , Humans , Male , Mice , B7-H1 Antigen/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Glioma/metabolism , Glioma/pathology , Glioma/immunology , Microglia/metabolism , Microglia/immunology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/immunology
16.
Curr Res Food Sci ; 8: 100733, 2024.
Article in English | MEDLINE | ID: mdl-38655189

ABSTRACT

Background: Fruit freshness detection by computer vision is essential for many agricultural applications, e.g., automatic harvesting and supply chain monitoring. This paper proposes to use the multi-task learning (MTL) paradigm to build a deep convolutional neural work for fruit freshness detection. Results: We design an MTL model that optimizes the freshness detection (T1) and fruit type classification (T2) tasks in parallel. The model uses a shared CNN (convolutional neural network) subnet and two FC (fully connected) task heads. The shared CNN acts as a feature extraction module and feeds the two task heads with common semantic features. Based on an open fruit image dataset, we conducted a comparative study of MTL and single-task learning (STL) paradigms. The STL models use the same CNN subnet with only one specific task head. In the MTL scenario, the T1 and T2 mean accuracies on the test set are 93.24% and 88.66%, respectively. Meanwhile, for STL, the two accuracies are 92.50% and 87.22%. Statistical tests report significant differences between MTL and STL on T1 and T2 test accuracies. We further investigated the extracted feature vectors (semantic embeddings) from the two STL models. The vectors have an averaged 0.7 cosine similarity on the entire dataset, with most values lying in the 0.6-0.8 range. This indicates a between-task correlation and justifies the effectiveness of the proposed MTL approach. Conclusion: This study proves that MTL exploits the mutual correlation between two or more relevant tasks and can maximally share their underlying feature extraction process. we envision this approach to be extended to other domains that involve multiple interconnected tasks.

17.
Eur J Radiol Open ; 12: 100555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38544918

ABSTRACT

Objective: To build a radiomics signature based on MRI images and evaluate its capability for preoperatively identifying the benign and malignant Soft tissue neoplasms (STTs). Materials and methods: 193 patients (99 malignant STTs and 94 benign STTs) were at random segmented into a training cohort (69 malignant STTs and 65 benign STTs) and a validation cohort (30 malignant STTs and 29 benign STTs) with a portion of 7:3. Radiomics features were extracted from T2 with fat saturation and T1 with fat saturation and gadolinium contrast images. Radiomics signature was developed by the least absolute shrinkage and selection operator (LASSO) logistic regression model. The receiver that operated characteristics curve (ROC) analysis was used to assess radiomics signature's prediction performance. Inner validation was performed on an autonomous cohort that contained 40 patients. Results: A radiomics was developed by a total of 16 radiomics features (5 original shape features and 11 were wavelet features) achieved favorable predictive efficacy. Malignant STTs showed higher radiomics score than benign STTs in both training cohort and validation cohort. A good prediction performance was shown by the radiomics signature in both training cohorts and validation cohorts. The training cohorts and validation cohorts had an area under curves (AUCs) of 0.885 and 0.841, respectively. Conclusions: A radiomics signature based on MRI images can be a trustworthy imaging biomarker for identification of the benign and malignant STTs, which could help guide treatment strategies.

18.
Sci Total Environ ; 923: 171377, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458463

ABSTRACT

Aflatoxin B1 (AFB1) is a major mycotoxin contaminant showing in the environment and foods. In this study, the molecular initiating events (MIEs) of AFB1-induced steatohepatitis were explored in mice and human cell model. We observed dose-dependent steatohepatitis in the AFB1-treated mice, including triglyceride accumulation, fibrotic collagen secretion, enrichment of CD11b + and F4/80+ macrophages/Kupffer cells, cell death, lymphocytes clusters and remarkable atrophy areas. The gut barrier and gut-microbiota were also severely damaged after the AFB1 treatment and pre-conditioned colitis in the experimental mice aggravated the steatohepatitis phenotypes. We found that macrophages cells can be pro-inflammatorily activated to M1-like phenotype by AFB1 through an AHR/TLR4/p-STAT3 (Ser727)-mediated mitochondrial oxidative stress. The phenotypes can be rescued by AHR inhibitors in the mice model and human cell model. We further showed that this signaling axis is based on the cross-talk interaction between AHR and TLR4. Gene knock-up experiment found that the signaling is dependent on AFB1 ligand-binding with AHR, but not protein expressions of TLR4. The signaling elevated NLRP3 and two immune metabolic enzymes ICAM-1 and IDO that are associated with macrophage polarization. Results from intervention experiments with natural anti-oxidant and AHR inhibitor CH223191 suggest that the macrophage polarization may rely on AHR and ROS. Our study provides novel and critical references to the food safety and public health regulation of AFB1.


Subject(s)
Aflatoxin B1 , Fatty Liver , Animals , Humans , Mice , Intercellular Adhesion Molecule-1/metabolism , Macrophages/metabolism , Oxidative Stress , STAT3 Transcription Factor/metabolism , Toll-Like Receptor 4/metabolism
19.
Int J Biol Macromol ; 264(Pt 1): 130477, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428784

ABSTRACT

Multidrug-resistant (MDR) bacterial infections have become a significant threat to global healthcare systems. Here, we developed a highly efficient antimicrobial hydrogel using environmentally friendly garlic carbon dots, pectin, and acrylic acid. The hydrogel had a porous three-dimensional network structure, which endowed it with good mechanical properties and compression recovery performance. The hydrogel could adhere closely to skin tissues and had an equilibrium swelling ratio of 6.21, indicating its potential as a wound dressing. In particular, the bactericidal efficacy following 24-h contact against two MDR bacteria could exceed 99.99 %. When the hydrogel was applied to epidermal wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) on mice, a remarkable healing rate of 93.29 % was observed after 10 days. This was better than the effectiveness of the traditionally used antibiotic kanamycin, which resulted in a healing rate of 70.36 %. In vitro cytotoxicity testing and hemolysis assay demonstrated a high biocompatibility. This was further proved by the in vivo assay where no toxic side effects were observed on the heart, liver, spleen, lung, or kidney of mice. This eco-friendly and easy-to-prepare food-inspired hydrogel provides an idea for the rational use of food and food by-products as a wound dressing to control MDR bacterial infections.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Carbon/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Pectins/pharmacology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Infections/drug therapy
20.
J Agric Food Chem ; 72(8): 4415-4425, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38355417

ABSTRACT

Spherical nucleic acids (SNAs) have been used to construct various nanobiosensors with gold nanoparticles (AuNPs) as nuclei. The SNAs play a critical role in biosensing due to their various physical and chemical properties, programmability, and specificity recognition ability. In this study, CRISPR-responsive self-assembled spherical nucleic acid (CRISPR-rsSNA) detection probes were constructed by conjugating fluorescein-labeled probes to the surface of AuNPs to improve the sensing performance. Also, the mechanism of ssDNA and the role of different fluorescent groups in the self-assembly process of CRISPR-rsSNA were explored. Then, CRISPR-rsSNA and reverse transcription-recombinase polymerase amplification (RT-RPA) were combined to develop an ultrasensitive fluorescence-detection strategy for norovirus. In the presence of the virus, the target RNA sequence of the virus was transformed and amplified by RT-RPA. The resulting dsDNA activated the trans-cleavage activity of CRISPR cas12a, resulting in disintegrating the outer nucleic acid structure of the CRISPR-rsSNA at a diffusible rate, which released reporter molecules. Norovirus was quantitated by fluorescence detection. This strategy facilitated the detection of the norovirus at the attomolar level. An RT-RPA kit for norovirus detected would be developed based on this method. The proposed method would be used for the detection of different viruses just by changing the target RNA and crRNA of the CRISPR cas12a system which provided a foundation for high-throughput detection of various substances.


Subject(s)
Metal Nanoparticles , Norovirus , Nucleic Acids , Norovirus/genetics , Gold , Cell Nucleus , Nucleic Acid Amplification Techniques , CRISPR-Cas Systems
SELECTION OF CITATIONS
SEARCH DETAIL