Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 266: 106783, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064891

ABSTRACT

Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.


Subject(s)
Flounder , Water Pollutants, Chemical , Animals , Cathepsins/genetics , Cathepsins/metabolism , Flounder/genetics , Flounder/metabolism , Phylogeny , Cloning, Molecular , Water Pollutants, Chemical/toxicity , Stress, Physiological/genetics
2.
Fish Shellfish Immunol ; 144: 109307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38122953

ABSTRACT

Scavenger receptors (SRs) are pattern recognition receptors involved in the innate immune defense against pathogen infection in fish. However, there has not been much research done on teleosts. In this study, 18 members of the SR gene family were found in large yellow croaker. The identification of the SR gene family showed that the protein length of SR members in large yellow croaker were quite different, and most SR genes were distributed in nuclear and endoplasmic. The evolutionary relationship, exon/intron structure and motif analysis revealed that members of the SR gene family were highly conserved. The results of the expression profiles after Pseudomonas plecoglossicida infection and hypoxia-exposure demonstrated that SR members were involved in inflammatory reactions. Especially, COLEC12 and SCARF1 exhibited substantial changes in response to both P. plecoglossicida and hypoxia stress, indicating their possible immunological functions. The result of this study revealed that SR genes played a vital part in the innate immune response of large yellow croaker, and would give important details for a deeper comprehension of the SR gene family's regulation mechanism under various conditions in large yellow croaker.


Subject(s)
Fish Diseases , Perciformes , Pseudomonas Infections , Animals , Receptors, Scavenger , Immunity, Innate/genetics , Hypoxia/veterinary , Fish Proteins/genetics , Fish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...