Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(2): 582-590, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38059743

ABSTRACT

Photodynamic therapy provides a promising solution for treating various cancer types. In this study, three distinct asymmetric porphyrin-cisplatin complex photosensitizers (ZnPt-P1, ZnPt-P2, and ZnPt-P3) were synthesized, each having unique side chains. Through a set of experiments involving singlet oxygen detection and density functional theory, ZnPt-P1 was demonstrated to have excellent efficacy, exceeding that of ZnPt-P2 and ZnPt-P3. Notably, ZnPt-1 showed significant phototoxicity while maintaining low dark toxicity when tested on HepG2 cells. Additionally, further examination revealed that ZnPt-P1 had the capability to generate reactive oxygen species within cancer cells when exposed to light irradiation. Taken together, these results highlight the potential of ZnPt-P1 as a photosensitizer for use in photodynamic therapy. This study contributes to enhancing cancer treatment methodologies and provides insights for the future development of innovative drugs for photosensitization.


Subject(s)
Photochemotherapy , Porphyrins , Photosensitizing Agents , Cisplatin/pharmacology , Porphyrins/chemistry , Singlet Oxygen/chemistry
2.
Small ; 20(23): e2308910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150628

ABSTRACT

The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.

3.
Dalton Trans ; 51(26): 10077-10084, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35730584

ABSTRACT

Lead (Pb) is one of the most widespread and highly toxic heavy metals in the environment. The design and synthesis of adsorbent materials for the selective and efficient removal of Pb2+ from aqueous solution has received much attention. Herein, the ligand 4,4'-azoxydibenzoic acid with the O- group was elaborately selected to construct a novel Pr-based MOF for Pb2+ removal. The as-prepared MOF adsorbents with high stability exhibited ultra-high selectivity for Pb2+, even in the presence of various highly concentrated competitive ions (with the ratios from 1 : 5 to 1 : 50). Also, a high uptake capacity (560.26 mg g-1) can be achieved for the MOF material, due to the availability of sufficient adsorption sites. The strong electrostatic attraction and coordination interaction between the numerous active O- sites on MOF adsorbents and Pb2+ can account for the good adsorption performance for Pb2+, which was systematically verified by zeta potential, FT-IR and XPS studies.

4.
Inorg Chem ; 61(2): 982-991, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34968039

ABSTRACT

Two-dimensional (2D) metal-organic framework (MOF) nanosheets, with largely exposed surface area and highly accessible active sites, have emerged as a novel kind of sensing material. Here, a luminescent 2D MOF nanosheet was designed and synthesized by a facile top-down strategy based on a three-dimensional (3D) layered MOF {[Zn(H2L)(H2O)2]·H2O}n (Zn-MOF; H4L = 3,5-bis(3',5'-dicarboxyphenyl)-1H-1,2,4-triazole). With a large π-conjugated system and rigid planar structure, ligand H4L was elaborately selected to construct the bulk Zn-MOF, which can be readily exfoliated into 2D nanosheets, owing to the weak interlayer interactions and easy-to-release H2O molecules in the interspaces of 2D layers. Given the great threat posed to the ecological environment by anti-inflammatory drugs and pesticides, the developed luminescent Zn-MOF nanosheets were utilized to determine these organic pollutants, achieving highly selective and sensitive detection of diclofenac sodium (DCF) and tetramethylthiuram disulfide (TMTD). Compared to the detection limits of 3D Zn-MOF (7.72 ppm for DCF, 6.01 ppm for TMTD), the obviously lower detection limits for 2D Zn-MOF nanosheets toward DCF (0.20 ppm) and TMTD (0.18 ppm) further revealed that the largely exposed surface area with rigid planar structure and ultralarge π-conjugated system greatly accelerated electron transfer, which brought about a vast improvement in response sensitivity. The remarkable quenching performance for DCF and TMTD stems from a combined effect of photoinduced electron transfer and competitive energy absorption. The possible sensing mechanism was systematically investigated by the studies of powder X-ray diffraction, UV-vis, luminescence lifetime, and density functional theory calculations.


Subject(s)
Metal-Organic Frameworks
5.
Nanomaterials (Basel) ; 10(2)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102397

ABSTRACT

The development of WO3-based gas sensors for analysis of acetone in exhaled breath is significant for noninvasive diagnosis of diabetes. A series of Fe-doped hexagonal and monoclinic WO3 phase-junction (Fe-h/m-WO3) sensors were synthesized by the hydrothermal calcination method, and the influences of operating temperature and light irradiation on the response were studied. Under light emitting diode (LED) illumination, Fe-h/m-WO3 exhibited higher responses to acetone than those of the undoped WO3-based sensors at an operating temperature of 260 °C with 90% relative humidity, and good linearity between response and acetone concentration (0.5 to 2.5 ppm) was achieved under the 90% relative humidity condition. Meanwhile, the optimal Fe-h/m-WO3 sensor exhibited high selectivity and stability for a duration of three months. The excellent sensing performance of Fe-h/m-WO3 was attributed to the formation of phase-junction and Fe doping, and these were beneficial for the separation of photon-generated carriers and oxygen adsorption on the WO3 surface, promoting the generation of superoxide radicals, which was demonstrated by electron paramagnetic resonance and photocurrent tests. Additionally, the Fe-doped WO3 phase-junction sample also showed good photocatalytic performance for rhodamine B degradation. This study may provide some insights into rational design of new types of gas sensors and offer an alternative for noninvasive diagnosis of diabetes.

6.
Viruses ; 11(7)2019 07 05.
Article in English | MEDLINE | ID: mdl-31284428

ABSTRACT

Aeromonas species are common pathogens of fish and some of them can opportunistically cause infectious diseases in humans. The overuse of antibiotics has led to the emergence of bacterial drug-resistance. To date, only 51 complete genome sequences of Aeromonas phages are available in GenBank. Here, we report the isolation of nine Aeromonas phages from a plateau lake in China. The protein cluster, dot plot and ANI analyses were performed on all 60 currently sequenced Aeromonas phage genomes and classified into nine clusters and thirteen singletons. Among the nine isolated phages, the DNA-packaging strategy of cluster 2L372D (including 2L372D, 2L372X, 4L372D, 4L372XY) is unknown, while the other five phages use the headful (P22/Sf6) DNA-packaging strategy. Notably, the isolated phages with larger genomes conservatively encode auxiliary metabolism genes, DNA replication and metabolism genes, while in smaller phage genomes, recombination-related genes were conserved. Finally, we propose a new classification scheme for Aeromonas phages.


Subject(s)
Aeromonas/virology , Bacteriophages/genetics , Lakes/virology , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/ultrastructure , Base Sequence , China , DNA, Viral/genetics , Evolution, Molecular , Genetic Variation , Genome, Viral/genetics , Host Specificity , Lakes/microbiology , Phylogeny , RNA, Transfer/genetics , Sequence Analysis, DNA , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...