Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35126601

ABSTRACT

The possible targets underlying the activity of bufalin on renal cell carcinoma (RCC) were investigated using network pharmacology and experimental approaches. PharmMapper and other databases were explored for predicting the bufalin targets and RCC-related targets. Finally, the enriched pathways and the targets were analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses. Furthermore, in vitro cell experiments were used to verify bufalin activation of AKT and MAPK signaling pathways in human mesangial cells. The therapeutic targets related to bufalin were identified via 35 intersecting targets. GO analysis identified 29 molecular functions, 16 cellular components, and 91 biological processes. KEGG pathway annotation identified 15 signal transduction pathways and 4 tumor-related pathways.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 231-6, 2016 Jan.
Article in Chinese | MEDLINE | ID: mdl-27228773

ABSTRACT

In order to explore a non-destructive monitoring technique, the use of digital photo pixels canopy cover (CC) diagnosis and prediction on maize growth and its nitrogen nutrition status. This study through maize canopy digital photo images on relationship between color index in the photo and the leaf area index (LAI), shoot dry matter weight (DM), leaf nitrogen content percentage (N%). The test conducted in the Chinese Academy of Agricultural Science from 2012 to 2013, based on Maize canopy Visual Image Analysis System developed by Visual Basic Version 6.0, analyzed the correlation of CC, color indices, LAI, DM, N% on maize varieties (Zhongdan909, ZD 909) under three nitrogen levels treatments, furthermore the indicators significantly correlated were fitted with modeling, The results showed that CC had a highly significant correlation with LAI (r = 0.93, p < 0.01), DM (r = 0. 94, p < 0.01), N% (r = 0.82, p < 0.01). Estimating the model of LAI, DM and N% by CC were all power function, and the equation respectively were y = 3.281 2x(0.763 9), y = 283.658 1x(0.553 6) and y = 3.064 5x(0.932 9); using independent data from modeling for model validation indicated that R2, RMSE and RE based on 1 : 1 line relationship between measured values and simulated values in the model of CC estimating LAI were 0.996, 0.035 and 1.46%; R2, RMSE and RE in the model of CC estimating DM were 0.978, 5.408 g and 2.43%; R2, RMSE and RE in the model of CC estimating N% were 0.990, 0.054 and 2.62%. In summary, the model can comparatively accurately estimate the LAI, DM and N% by CC under different nitrogen levels at maize grain filling stage, indicating that it is feasible to apply digital camera on real-time undamaged rapid monitoring and prediction for maize growth conditions and its nitrogen nutrition status. This research finding is to be verified in the field experiment, and further analyze the applicability throughout the growing period in other maize varieties and different planting density.


Subject(s)
Nitrogen/analysis , Plant Leaves/chemistry , Zea mays/growth & development , Models, Theoretical , Plant Leaves/growth & development , Spectrum Analysis , Zea mays/chemistry
3.
Sci Rep ; 6: 21096, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883475

ABSTRACT

Astrocytes play critical roles in neural circuit formation and function. Recent studies have revealed several secreted and contact-mediated signals from astrocytes which are essential for neurite outgrowth and synapse formation. However, the mechanisms underlying the regulation of dendritic branching by astrocytes remain elusive. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphatidic acid (PA) and choline, has been implicated in the regulation of neurite outgrowth. Here we showed that knockdown of PLD1 selectively in astrocytes reduced dendritic branching of neurons in neuron-glia mixed culture. Further studies from sandwich-like cocultures and astrocyte conditioned medium suggested that astrocyte PLD1 regulated dendritic branching through secreted signals. We later demonstrated that PA was the key mediator for astrocyte PLD1 to regulate dendritic branching. Moreover, PA itself was sufficient to promote dendritic branching of neurons. Lastly, we showed that PA could activate protein kinase A (PKA) in neurons and promote dendritic branching through PKA signaling. Taken together, our results demonstrate that astrocyte PLD1 and its lipid product PA are essential regulators of dendritic branching in neurons. These results may provide new insight into mechanisms underlying how astrocytes regulate dendrite growth of neurons.


Subject(s)
Astrocytes/metabolism , Dendrites/metabolism , Phosphatidic Acids/metabolism , Animals , Biomarkers , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Knockdown Techniques , Neurons/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...