Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Opt Express ; 32(10): 17072-17087, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858899

ABSTRACT

Reconstructing computed tomography (CT) images from an extremely limited set of projections is crucial in practical applications. As the available projections significantly decrease, traditional reconstruction and model-based iterative reconstruction methods become constrained. This work aims to seek a reconstruction method applicable to fast CT imaging when available projections are highly sparse. To minimize the time and cost associated with projections acquisition, we propose a deep learning model, X-CTReNet, which parameterizes a nonlinear mapping function from orthogonal projections to CT volumes for 3D reconstruction. The proposed model demonstrates effective capability in inferring CT volumes from two-view projections compared to baseline methods, highlighting the significant potential for drastically reducing projection acquisition in fast CT imaging.

2.
J Colloid Interface Sci ; 673: 92-103, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38875801

ABSTRACT

Carbon nanofibers (CFs) have been widely applied as electrodes for energy storage devices owing to the features of increased contact area between electrodes and electrolyte, and shortened transmission route of electrons. However, the poor electrochemical activity and severe waste of space hinder their further application as supercapacitors electrodes. In this work, MnO2-x nanoflowers restricted and epitaxial growth in/out carbon nanofibers (MnO2/MnO@CF) were prepared as excellent electrode materials for supercapacitors. With the synergistic effect of uniquely designed structure and the introduction of MnO and MnO2 nanoflowers, the prepared interconnected MnO2/MnO@CF electrodes demonstrated satisfactory electrochemical performance. Furthermore, the MnO2/MnO@CF//activated carbon (AC) asymmetric supercapacitor offered an outstanding long-term cycle stability. Besides, kinetic analysis of MnO2/MnO@CF-90 was conducted and the diffusion-dominated storage mechanism was well-revealed. This concept of "internal and external simultaneous decoration" with different valence states of manganese oxides was proven to improve the electrochemical performance of carbon nanofibers, which could be generalized to the preparation and performance improvement of other fiber-based electrodes.

3.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847939

ABSTRACT

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Molecular Docking Simulation , Peptides , Protein Hydrolysates , Solubility , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Water/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Papain/metabolism , Papain/antagonists & inhibitors , Papain/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism
4.
J Colloid Interface Sci ; 671: 67-77, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38788425

ABSTRACT

With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS2/CNFs) were prepared by electrostatic spinning technique and calcination process. The morphology and electromagnetic wave absorption properties were tuned by changing the content of flower-like MoS2. The optimized 1T/2H MoS2/CNFs composite exhibits superior electromagnetic wave absorption with minimum reflection (RLmin) of -42.26 dB and effective absorption bandwidth (EAB) of 6.48 GHz at 2.5 mm. Multi-facts contribute to the super performance. First, the uniquely designed nanosheet and 3D interconnected networks leads to multiple reflection and scattering of electromagnetic waves, which promotes the attenuation of electromagnetic waves. Second, the propriate content of CNFs and MoS2 with different phase regulates its impedance matching characteristic. Third, Numerous heterogeneous interfaces existed between CNFs and MoS2, 1T and 2H MoS2 phase results in interface polarization. Besides, the 1T/2H MoS2 rich in defects induces defect polarization, improving the dielectric loss. Furthermore, the electromagnetic wave absorption performance was proved via radar reflectance cross section simulation. This work illustrates 1T/2H MoS2/CNFs is a promising material for electromagnetic absorption with wide bandwidth, strong absorption, low density, and high thermal stability.

5.
Small ; : e2402438, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644689

ABSTRACT

The simple and low-cost construction of a 3D network structure is an ideal way to prepare high-performance electromagnetic wave (EMW) absorption materials. Herein, a series of carbon skeleton/carbon nanotubes/Ni3ZnC0.7 composites (CS/CNTs/Ni3ZnC0.7) are successfully prepared by in situ growth of Ni3ZnC0.7 and CNTs on 3D melamine sponge carbon. With the increase of precursor, Ni3ZnC0.7 nanoparticles nucleate and catalyze the generation of CNTs on the surface of the carbon skeleton. The minimum reflection loss (RL) value of the S60min composite (loading time of 60 min) reaches -86.6 dB at 1.6 mm and effective absorption bandwidth (EAB, RL≤-10 dB) is up to 9.3 GHz (8.7-18 GHz). The 3D network sponge carbon with layered micro/nanostructure and hollow skeleton promotes multiple reflection and absorption mechanisms of incident EMW. The N-doping and defects can be equivalent to an electric dipole, providing dipole polarization to increase dielectric relaxation. The uniform Ni3ZnC0.7 nanoparticles and CNTs play a key role in dissipating electromagnetic energy, blocking heat transfer, and enhancing the mechanical properties of the skeleton. Fortunately, the composite displays a quite low thermal conductivity of 0.09075 W m·K-1 and good flexibility, which can provide insulation and quickly recover to its original state after being stressed.

6.
J Colloid Interface Sci ; 666: 594-602, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38613981

ABSTRACT

Tailoring the omnidirectional conductivity networks in nickel oxide-based electrodes is important for ensuring their long lifespan, stability, high capacity, and high-rate capability. In this study, nickel metal nanoparticles and a three-dimensional nitrogen-doped carbon matrix were used to embellish the nickel oxide composite NiO-Ni/N-C via simplified hard templating. When a porous nitrogen-doped carbon matrix is present, a rapid pathway would be established for charging and discharging the electrons and lithium ions in a lithium-ion battery, thereby alleviating the volumetric expansion of the NiO nanoparticles during the operation of the battery. Moreover, the Ni0 ions added to serve as active sites to improve the capacity of the NiO-based electrodes and strengthen their conductivities. The multielement-effects of the optimal NiO-Ni/N-C electrode leads it to exhibit a capacity of 1310.8 mAh g-1 at 0.1 A g-1 for 120 loops and a rate capability of 441.5 mAh g-1 at 20.0 A g-1. Kinetic analysis of the prepared electrodes proved their ultrafast ionic and electronic conductivities. This strategy of hard templating reduces the number of routes required for preparing different types of electrodes, including NiO-based electrodes, and improves their electrochemical performance to enable their use in energy storage applications.

7.
Dalton Trans ; 53(2): 582-590, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38059743

ABSTRACT

Photodynamic therapy provides a promising solution for treating various cancer types. In this study, three distinct asymmetric porphyrin-cisplatin complex photosensitizers (ZnPt-P1, ZnPt-P2, and ZnPt-P3) were synthesized, each having unique side chains. Through a set of experiments involving singlet oxygen detection and density functional theory, ZnPt-P1 was demonstrated to have excellent efficacy, exceeding that of ZnPt-P2 and ZnPt-P3. Notably, ZnPt-1 showed significant phototoxicity while maintaining low dark toxicity when tested on HepG2 cells. Additionally, further examination revealed that ZnPt-P1 had the capability to generate reactive oxygen species within cancer cells when exposed to light irradiation. Taken together, these results highlight the potential of ZnPt-P1 as a photosensitizer for use in photodynamic therapy. This study contributes to enhancing cancer treatment methodologies and provides insights for the future development of innovative drugs for photosensitization.


Subject(s)
Photochemotherapy , Porphyrins , Photosensitizing Agents , Cisplatin/pharmacology , Porphyrins/chemistry , Singlet Oxygen/chemistry
8.
Small ; 20(23): e2308910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150628

ABSTRACT

The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.

9.
J Med Internet Res ; 25: e46621, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37523226

ABSTRACT

BACKGROUND: The swift shift toward internet hospitals has relied on the willingness of medical practitioners to embrace new systems and workflows. Low engagement or acceptance by medical practitioners leads to difficulties in patient access. However, few investigations have focused on barriers and facilitators of adoption of internet hospitals from the perspective of medical practitioners. OBJECTIVE: This study aims to identify both enabling and inhibiting predictors associated with resistance and behavioral intentions of medical practitioners to use internet hospitals by combining the conservation of resources theory with the Unified Theory of Acceptance and Use of Technology and technostress framework. METHODS: A mixed methods research design was conducted to qualitatively identify the factors that enable and inhibit resistance and behavioral intention to use internet hospitals, followed by a quantitative survey-based study that empirically tested the effects of the identified factors. The qualitative phase involved conducting in-depth interviews with 16 experts in China from June to August 2022. Thematic analysis was performed using the qualitative data analysis software NVivo version 10 (QSR International). On the basis of the findings and conceptual framework gained from the qualitative interviews, a cross-sectional, anonymous, web-based survey of 593 medical practitioners in 28 provincial administrative regions of China was conducted. The data collected were analyzed using the partial least squares method, with the assistance of SPSS 27.0 (IBM Corp) and Mplus 7.0 (Muthen and Muthen), to measure and validate the proposed model. RESULTS: On the basis of qualitative results, this study identified 4 facilitators and inhibitors, namely performance expectancy, social influence, work overload, and role ambiguity. Of the 593 medical practitioners surveyed in the quantitative research, most were female (n=364, 61.4%), had a middle title (n=211, 35.6%) or primary title (n=212, 35.8%), and had an average use experience of 6 months every year. By conducting structural equation modeling, we found that performance expectancy (ß=-.55; P<.001) and work overload (ß=.16; P=.005) had the most significant impact on resistance to change. Resistance to change fully mediated the influence of performance expectancy and partially mediated the influences of social influence (variance accounted for [VAF]=43.3%; P=.002), work overload (VAF=37.2%; P=.03), and role ambiguity (VAF=12.2%; P<.001) on behavioral intentions to use internet hospitals. In addition, this study found that the sex, age, professional title, and use experience of medical practitioners significantly moderated the aforementioned influencing mechanisms. CONCLUSIONS: This study investigated the factors that facilitate or hinder medical practitioners' resistance to change and their behavioral intentions to use internet hospitals. The findings suggest that policy makers avoid the resistance and further promote the adoption of internet hospitals by ensuring performance expectancy and social influence and eliminating work overload and role ambiguity.


Subject(s)
Hospitals , Physicians , Humans , Health Knowledge, Attitudes, Practice , China , Intention , Attitude of Health Personnel , Internet
10.
Small ; 19(40): e2303742, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37267931

ABSTRACT

The hierarchical Cu2 S@NC@MoS3 heterostructures have been firstly constructed by the high-capacity MoS3 and high-conductive N-doped carbon to co-decorate the Cu2 S hollow nanospheres. During the heterostructure, the middle N-doped carbon layer as the linker facilitates the uniform deposition of MoS3 and enhances the structural stability and electronic conductivity. The popular hollow/porous structures largely restrain the big volume changes of active materials. Due to the cooperative effect of three components, the new Cu2 S@NC@MoS3 heterostructures with dual heterogenous interfaces and small voltage hysteresis for sodium ion storage display a high charge capacity (545 mAh g-1 for 200 cycles at 0.5 A g-1 ), excellent rate capability (424 mAh g-1 at 15 A g-1 ) and ultra-long cyclic life (491 mAh g-1 for 2000 cycles at 3 A g-1 ). Except for the performance test, the reaction mechanism, kinetics analysis, and theoretical calculation have been performed to explain the reason of excellent electrochemical performance of Cu2 S@NC@MoS3 . The rich active sites and rapid Na+ diffusion kinetics of this ternary heterostructure is beneficial to the high efficient sodium storage. The assembled full cell matched with Na3 V2 (PO4 )3 @rGO cathode likewise displays remarkable electrochemical properties. The outstanding sodium storage performances of Cu2 S@NC@MoS3 heterostructures indicate the potential applications in energy storage fields.

11.
Viruses ; 15(6)2023 06 19.
Article in English | MEDLINE | ID: mdl-37376691

ABSTRACT

Salt mines are a special type of hypersaline environment. Current research mainly focuses on prokaryotes, and the understanding of viruses in salt mines remains limited. Understanding viruses in hypersaline environments is of great significance for revealing the formation and maintenance of microbial communities, energy flow and element cycling, and host ecological functions. A phage infecting Halomonas titanicae was isolated from Yipinglang Salt Mine in China, designated Halomonas titanicae phage vB_HtiS_YPHTV-1 (YPHTV-1). Transmission electron microscopy revealed that YPHTV-1 had an icosahedral head with a diameter of 49.12 ± 0.15 nm (n = 5) and a long noncontractile tail with a length of 141.7 ± 0.58 nm (n = 5), indicating that it was a siphovirus. The one-step growth curve showed that the burst size of YPHTV-1 was 69 plaque forming units (PFUs) cell-1. The genome of YPHTV-1 was 37,980 bp with a GC content of 36.2%. The phylogenetic analysis of the six conserved proteins indicated that YPHTV-1 formed a cluster with Bacillus phages and was separated from phages infecting Halomonas. The average nucleotide identity (ANI), phylogenetic, and network analyses indicated that the phage YPHTV-1 represented a new genus under Caudoviricetes. In total, 57 open reading frames (ORFs) were predicted in the YPHTV-1 genome, 30 of which could be annotated in the database. Notably, several auxiliary metabolic genes were encoded by YPHTV-1, such as ImmA/IrrE family metalloendopeptidase, mannose-binding lectin (MBL) folding metallohydrolase, M15 family of metal peptidases, MazG-like family protein, O antigen ligase, and acyltransferase. These genes potentially enabled the host bacterium to resist ionizing radiation, ultraviolet light (UV), mitomycin C, ß-lactam antibiotic, high osmotic pressure, and nutritional deficiencies. These findings highlight the role of haloviruses in the life cycle of halobacteria.


Subject(s)
Bacteriophages , Genome, Viral , Sequence Analysis, DNA , Phylogeny , Genomics , Myoviridae/genetics , Open Reading Frames
12.
Nanomaterials (Basel) ; 13(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37110907

ABSTRACT

ZnO nanoparticles in a spherical-like structure were synthesized via filtration and calcination methods, and different amounts of ZnO nanoparticles were added to MgH2 via ball milling. The SEM images revealed that the size of the composites was about 2 µm. The composites of different states were composed of large particles with small particles covering them. After the absorption and desorption cycle, the phase of composites changed. The MgH2-2.5 wt% ZnO composite reveals excellent performance among the three samples. The results show that the MgH2-2.5 wt% ZnO sample can swiftly absorb 3.77 wt% H2 in 20 min at 523 K and even at 473 K for 1 h can absorb 1.91 wt% H2. Meanwhile, the sample of MgH2-2.5 wt% ZnO can release 5.05 wt% H2 at 573 K within 30 min. Furthermore, the activation energies (Ea) of hydrogen absorption and desorption of the MgH2-2.5 wt% ZnO composite are 72.00 and 107.58 KJ/mol H2, respectively. This work reveals that the phase changes and the catalytic action of MgH2 in the cycle after the addition of ZnO, and the facile synthesis of the ZnO can provide direction for the better synthesis of catalyst materials.

13.
J Colloid Interface Sci ; 642: 447-461, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37023516

ABSTRACT

With the rapidly development of radar detection technology and the increasingly complex application environment in military field and electromagnetic pollution surrounded by electron devices, increasingly demand is needed for electromagnetic wave absorbent materials with high absorption efficiency and thermal stability. Herein, a novel Ni3ZnC0.7/Ni loaded puffed-rice derived carbon (RNZC) composites are successfully prepared by vacuum filtration of metal-organic frameworks gel precursor together with layered porous-structure carbon and followed by calcination. The Ni3ZnC0.7 particles uniformly decorate on the surface and pores of puffed-rice derived carbon. The puffed-rice derived carbon@Ni3ZnC0.7/Ni-400 mg (RNZC-4) sample displayed the best electromagnetic wave absorption (EMA) performances among the samples with different Ni3ZnC0.7 loading. The minimum reflection loss (RLmin) of the RNZC-4 composite reaches -39.9 dB at 8.6 GHz, while widest effective absorption bandwidth (EAB) of RNZC-4 for RL < -10 dB can reach 9.9 GHz (8.1-18 GHz, 1.49 mm). High porosity and large specific surface area promote the multiple reflection-absorption effect of the incident electromagnetic waves. The Ni3ZnC0.7 nanoparticles provide a large number of interfaces and dipole factors. Analysis reveals that the RNZC-4 remained general stability under 400 °C with formation of a small amount of NiO and ZnO phases. Surprisingly, at such high temperature, the absorbing properties of the material are improved rather than decreased. Obviously, the material still maintains good electromagnetic wave performance at high temperature, and implies that the absorber shows good performance stability. Therefore, our preparations exhibit potential applications under extreme conditions and a new insight for the design and application of bimetallic carbides.

14.
Phys Med Biol ; 68(9)2023 04 26.
Article in English | MEDLINE | ID: mdl-36889004

ABSTRACT

Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information.Approach.To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details.Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images.Significance.MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.


Subject(s)
Artifacts , Tomography, X-Ray Computed , Humans , Algorithms , Image Processing, Computer-Assisted , Lymph Nodes , Neural Networks, Computer
15.
Nature ; 613(7942): 195-202, 2023 01.
Article in English | MEDLINE | ID: mdl-36544023

ABSTRACT

Inhibition of the tumour suppressive function of p53 (encoded by TP53) is paramount for cancer development in humans. However, p53 remains unmutated in the majority of cases of glioblastoma (GBM)-the most common and deadly adult brain malignancy1,2. Thus, how p53-mediated tumour suppression is countered in TP53 wild-type (TP53WT) GBM is unknown. Here we describe a GBM-specific epigenetic mechanism in which the chromatin regulator bromodomain-containing protein 8 (BRD8) maintains H2AZ occupancy at p53 target loci through the EP400 histone acetyltransferase complex. This mechanism causes a repressive chromatin state that prevents transactivation by p53 and sustains proliferation. Notably, targeting the bromodomain of BRD8 displaces H2AZ, enhances chromatin accessibility and engages p53 transactivation. This in turn enforces cell cycle arrest and tumour suppression in TP53WT GBM. In line with these findings, BRD8 is highly expressed with H2AZ in proliferating single cells of patient-derived GBM, and is inversely correlated with CDKN1A, a canonical p53 target that encodes p21 (refs. 3,4). This work identifies BRD8 as a selective epigenetic vulnerability for a malignancy for which treatment has not improved for decades. Moreover, targeting the bromodomain of BRD8 may be a promising therapeutic strategy for patients with TP53WT GBM.


Subject(s)
Epigenesis, Genetic , Glioblastoma , Transcription Factors , Tumor Suppressor Protein p53 , Adult , Humans , Cell Cycle Checkpoints , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Histones/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Proliferation
16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(1): 52-57, 2023 Feb 01.
Article in English, Chinese | MEDLINE | ID: mdl-38596941

ABSTRACT

OBJECTIVES: This study aimed to investigate the oral health knowledge of elementary school teachers and assess their attitude towards oral health education in Zunyi. METHODS: A total of 636 teachers from 10 primary schools in Zunyi were selected by stratified sampling, and their general information, oral health care habits, results of oral health knowledge questionnaire, and attitude towards oral health and oral health education were investigated. Data were statistically analyzed using SPSS 21.0. RESULTS: A total of 614 teachers answered the questionnaires. Only 8.8% brush their teeth for more than three minutes, 23.8% brush their teeth horizontally, 64.7% do not performteeth cleaning, and 78.2% do not use floss. Teachers have a weak understanding that six-year teeth are permanent, that pit and fissure sealing could prevent dental caries, and that dental floss could remove dental plaque. However, their attitude towards oral health and oral health education was found to be good. CONCLUSIONS: Schools could improve teachers' oral health know-ledge by organizing training and other activities. Teachers could also play an active role in leading and cultivating school-age children to establish good oral habits.


Subject(s)
Dental Caries , Oral Health , Child , Humans , Dental Caries/prevention & control , School Teachers , Health Knowledge, Attitudes, Practice , Health Education, Dental , Surveys and Questionnaires
17.
Medicine (Baltimore) ; 101(42): e31001, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36281186

ABSTRACT

To investigate the influence of interpersonal emotion regulation and conscientiousness on team emotional intelligence. A total of 1369 college students were investigated with the conscientiousness subscale of Big Five Personality Questionnaire, Team Emotional Intelligence Scale and Leadership Positive Emotional Operation Questionnaire. Variance analysis, Pearson product difference correlation analysis, multiple regression analysis and path analysis were used. In order to avoid the possible skew problem, the bootstrap method was used to calculate the structural equation model. SPSS 22.0, Amos 24, R software were used for statistical analysis. A total of 1600 questionnaires were sent out and 1369 effective questionnaires were recovered. The total score of College Students' team emotional intelligence was 5.07 ± 0.70, with 4.88 ± 0.87, 5.38 ± 0.79, 4.74 ± 0.91, 4.71 ± 0.83, 5.23 ± 1.00, and 5.46 ± 0.91 for interpersonal understanding, asking for feedback, emotional management, organizational cognition, relationship building and problem-solving ability, respectively. Conscientiousness significantly predicted team emotional intelligence, and leadership's positive emotional operation. Furthermore, conscientiousness could predict team emotional intelligence through mediating individual emotional intelligence. Interpersonal positive emotion regulation played a part of mediating role between conscientiousness and team emotional intelligence.


Subject(s)
Emotional Intelligence , Interpersonal Relations , Personality , Humans , Students/psychology , Surveys and Questionnaires , Universities
18.
Ginekol Pol ; 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36165640

ABSTRACT

OBJECTIVES: Endometriosis is a common gynecological disease that seriously affects women's health and quality of life. However, the pathogenesis of endometriosis remains uncertain. This study aims to find the key microRNAs (miRNAs) and mRNAs and further to elucidate the pathogenesis of endometriosis. MATERIAL AND METHODS: Differentially expressed mRNAs (DEmRNAs) and the differentially expressed miRNAs (DEmiRNAs) were obtained by Gene Expression Omnibus (GEO) datasets integration analysis. Functional enrichment analysis of DEmRNAs and DEmRNAs targeted by DEmiRNAs was enforced using GeneCodis3. The DEmiRNA-DEmRNA interaction network was built using Cytoscape. The expression of candidate DEmRNA and DEmiRNA was verified using quantitative real time-polymerase chain reaction (QRT-PCR) and online datasets followed by diagnostic and immune cell infiltration analysis. RESULTS: A total of 835 (327 down-regulated and 508 up-regulated) DEmRNAs and 39 (24 down-regulated and 15 up-regulated) DEmiRNAs were identified between ectopic endometria (EC) group and eutopic endometria (EU) group. DEmRNAs targeted by DEmiRNAs were markedly enriched in cell adhesion molecules, pathways in cancer, leukocyte transendothelial migration, cytokine-cytokine receptor interaction and MAPK signaling pathway. The DEmiRNA-DEmRNA interaction network of up-regulated miRNAs was consisted of 15 miRNAs and 188 corresponding mRNAs. For down-regulated miRNAs, the DEmiRNA-DEmRNA interaction network was consisted of 24 miRNAs and 305 corresponding mRNAs. QRT-PCR validation results of IRF6, PTGER3, NTRK2, hsa-miR-449a and hsa-miR-873-5p were in line with the GEO analysis result. RF6, PTGER3 and NTRK2 had a potential diagnostic value for endometriosis. In addition, the infiltration of macrophages M2 and NK cells activated was the most significantly increased and reduced in ectopic endometrial, respectively. CONCLUSIONS: These identified DEmRNAs and DEmiRNAs may be may be associated with the pathogenesis of endometriosis. The integrated analysis of miRNA and mRNA expression profiles may provide a new perspective for understanding the mechanisms of endometriosis and developing new treatments.

19.
Front Chem ; 10: 942578, 2022.
Article in English | MEDLINE | ID: mdl-36092674

ABSTRACT

Dry eye disease is a common condition that affects the eyes. It is caused by problems with the tear film and the tear dynamics. Dry eye can be caused by an increase in the amount of reactive oxygen species (ROS) in the corneal epithelium. The treatment for dry eye typically focuses on relieving the uncomfortable symptoms by using eye drops such as artificial tears, antibiotics, and by using anti-inflammatory/immunosuppressive agents such as cyclosporine, and lifitegrast. However, the recovery of patients with dry eye can take several years particularly if the symptoms are severe. This is because the present treatment approaches for dry eye are not based on its cause, e.g., the oxidative stress arising from the rapid increase in ROS. This work describes a new type of antioxidant made from pterostilbene (PS) and carboxyl-chitosan modified graphene (CG). The use of a hydrophilic two-dimensional CG nanosheet to improve the properties of PS is reported. Superior enhanced properties including better cellular permeability, long sustained release period (over 30 h), and antioxidant properties, were realized by using PS-CG. A hyperosmotic (HS) damaged human corneal epithelial cell (HCEC) model was used for antioxidant tests. This model has an intracellular ROS level 4 times more than that of a control group. The ROS content was declined efficiently to the same amount as normal cells in the PS-CG treated HS group. There was a significant decline in the content of lactate dehydrogenase (LDH) and the apoptosis rate of HCEC in the PS-CG treated HS group when compared to that seen in the HS model. Real-time polymerase chain reaction (PCR) and western blots (WB) were used to understand the antioxidant mechanism of PS-CG. The results showed that the antioxidant was working by activating the Keap1-Nrf2-ARE signalling pathway. In vivo testing testing using a dry eye mouse model suggested that the PS-CG acted as an efficient antioxidant. More tear production and healthier corneal and conjunctival epithelial cells were achieved when PC-CG was applied to this model. The use of PS-CG could be a new strategy for treating dry eye and other ocular diseases caused by ROS.

20.
Oncogene ; 41(35): 4130-4144, 2022 08.
Article in English | MEDLINE | ID: mdl-35864175

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) and SET domain bifurcated 1 (SETDB1, also known as ESET) are oncogenic methyltransferases implicated in a number of human cancers. These enzymes typically function as epigenetic repressors of target genes by methylating histone H3 K27 and H3-K9 residues, respectively. Here, we show that EZH2 and SETDB1 are essential to proliferation in 3 SCC cell lines, HSC-5, FaDu, and Cal33. Additionally, we find both of these proteins highly expressed in an aggressive stem-like SCC sub-population. Depletion of either EZH2 or SETDB1 disrupts these stem-like cells and their associated phenotypes of spheroid formation, invasion, and tumor growth. We show that SETDB1 regulates this SCC stem cell phenotype through cooperation with ΔNp63α, an oncogenic isoform of the p53-related transcription factor p63. Furthermore, EZH2 is upstream of both SETDB1 and ΔNp63α, activating these targets via repression of the tumor suppressor RUNX3. We show that targeting this pathway with inhibitors of EZH2 results in activation of RUNX3 and repression of both SETDB1 and ΔNp63α, antagonizing the SCC cancer stem cell phenotype. This work highlights a novel pathway that drives an aggressive cancer stem cell phenotype and demonstrates a means of pharmacological intervention.


Subject(s)
Carcinoma, Squamous Cell , Enhancer of Zeste Homolog 2 Protein , Cell Line, Tumor , Core Binding Factor Alpha 3 Subunit , Histone-Lysine N-Methyltransferase , Humans , Neoplastic Stem Cells , Phenotype , Promoter Regions, Genetic , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...