Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 356: 120635, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508001

ABSTRACT

The transport sector proves a major energy consumer in China, but improving energy-saving performance in China's provincial transport sector from the lifecycle perspective remains unresolved. Thus, this study employs the environmentally extended multi-region input-output (MRIO) method, structural path analysis, and the newest MRIO table of China from 2017, to investigate how to improve the energy-saving performance from final demand structure, supply chain, and pathway perspectives. The relevant results are threefold. (1) Regarding the final demand structure level, the embodied energy consumption of China's transport sector is predominantly driven by investment from the production side, while that of the consumption side is primarily caused by exports. (2) At the supply chain level, production-side embodied energy consumption primarily occurs along a three-echelon supply chain, while that from the consumption side mostly occurs via a two-echelon supply chain. (3) At the pathway level, the production-side energy-saving performance of China's provincial transport sector is dominated by two pathways along the construction sector, including transport sector → construction sector → final demands, and transport sector → intermediate inputs → construction sector → final demands, while that of the consumption side is chiefly determined by three pathways along internal transportation chains.


Subject(s)
Economic Development , Investments , China , Transportation , Carbon Dioxide/analysis
2.
J Biol Chem ; 293(46): 17705-17715, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30242127

ABSTRACT

Cyanobacteriochromes (CBCRs) are photochromic proteins in cyanobacteria that act as photosensors. CBCRs bind bilins as chromophores and sense nearly the entire visible spectrum of light, but the regulation of the chromophorylation of CBCRs is unknown. Slr1393 from Synechocystis sp. PCC 6803 is a CBCR containing three consecutive GAF (cGMP phosphodiesterase, adenylyl cyclase, and FhlA protein) domains, of which only the third one (Slr1393g3) can be phycocyanobilin-chromophorylated. The protein Slr2111 from Synechocystis sp. PCC 6803 includes a cystathionine ß-synthase (CBS) domain pair of an as yet unknown function at its N terminus. CBS domains are often characterized as sensors of cellular energy status by binding nucleotides. In this work, we demonstrate that Slr2111 strongly interacts with Slr1393 in vivo and in vitro, which generates a complex in a 1:1 molar ratio. This tight interaction inhibits the chromophorylation of Slr1393g3, even if the chromophore is present. Instead, the complex stability and thereby the chromophorylation of Slr1393 are regulated by the binding of nucleotides (ATP, ADP, AMP) to the CBS domains of Slr2111 with varying affinities. It is demonstrated that residues Asp-53 and Arg-97 of Slr2111 are involved in nucleotide binding. While ATP binds to Slr2111, the association between the two proteins gets weaker and chromophorylation of Slr1393 are enabled. In contrast, AMP binding to Slr2111 leads to a stronger association, thereby inhibiting the chromophorylation. It is concluded that Slr2111 acts as a sensor of the cellular energy status that regulates the chromophorylation of Slr1393 and thereby its function as a light-driven histidine kinase.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Photoreceptors, Microbial/metabolism , Phycobilins/metabolism , Phycocyanin/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Histidine Kinase/metabolism , Kinetics , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation , Sequence Alignment , Synechocystis/chemistry
3.
Bioresour Technol ; 249: 234-240, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29045927

ABSTRACT

Validamycin A (Val-A) is produced by Streptomyces as a secondary metabolite with wide agricultural applications of controlling rice sheath blight, false smut and damping-off diseases. The effect of alkaline pH shock on enhancing Val-A production and its mechanism were investigated. A higher yield of Val-A was achieved by NaOH shock once or several times together with faster protein synthesis and sugar consumption and alkaline pH shock can increase Val-A production by 27.43%. Transcription of genes related to amino acid metabolism, carbon metabolism and electron respiratory chain was significantly up-regulated, accompanied by the substantial increase of respiratory activity and glutamate concentration. Val-A production was promoted by a series of complex mechanisms and made a response to pH stress signal, which led to the enhancement of glutamate metabolism and respiration activity. The obtained information will facilitate future studies for antibiotic yield improvement and the deep revealment of molecular mechanism.


Subject(s)
Inositol/analogs & derivatives , Streptomyces , Carbon , Fermentation
4.
Gene ; 575(2 Pt 1): 313-20, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26367329

ABSTRACT

Cyanobacteria are among the main contributors to global photosynthesis and show a high degree of metabolic plasticity. Synechocystis sp. PCC 6803 can grow under photoautotrophic, photomixotrophic or photoheterotrophic conditions. We have characterized a novel periplasmic protein (Slr0280) that tunes the photomixotrophic growth of Synechocystis sp. PCC 6803. Slr0280 is a multi-domain protein consisting mainly of ß-sheets. Several proteins that interact with Slr0280 were identified via bacterial two-hybrid screening. Slr0280 may interact through its DUF2233 domain with partners that participate in sugar metabolism, thereby coordinating the respective regulations. When slr0280 was deleted, the mutant grew more slowly than wild-type in the presence of glucose, which is ascribed to the down-regulation of glycolysis, glycogen catabolism, oxidative pentose phosphate pathway, Calvin cycle and glucose utilization. A positive regulation of Slr0280 on these sugar catabolic enzymes was confirmed by transcript (qPCR) analyses. Based on these findings, we proposed a speculative model that Slr0280 plays a coordinating regulatory role in sugar metabolism.


Subject(s)
Glycolysis/physiology , Pentose Phosphate Pathway/physiology , Periplasmic Proteins , Photosynthesis/physiology , Synechocystis , Glucose/genetics , Glucose/metabolism , Glycogen/genetics , Glycogen/metabolism , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Protein Structure, Secondary , Synechocystis/genetics , Synechocystis/metabolism
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2558-69, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286841

ABSTRACT

Allophycocyanin B (AP-B) is one of the two terminal emitters in phycobilisomes, the unique light-harvesting complexes of cyanobacteria and red algae. Its low excitation-energy level and the correspondingly redshifted absorption and fluorescence emission play an important role in funnelling excitation energy from the hundreds of chromophores of the extramembraneous phycobilisome to the reaction centres within the photosynthetic membrane. In the absence of crystal structures of these low-abundance terminal emitters, the molecular basis for the extreme redshift and directional energy transfer is largely unknown. Here, the crystal structure of trimeric AP-B [(ApcD/ApcB)3] from Synechocystis sp. PCC 6803 at 1.75 Šresolution is reported. In the crystal lattice, eight trimers of AP-B form a porous, spherical, 48-subunit assembly of 193 Šin diameter with an internal cavity of 1.1 × 10(6) Å(3). While the overall structure of trimeric AP-B is similar to those reported for many other phycobiliprotein trimers, the chromophore pocket of the α-subunit, ApcD, has more bulky residues that tightly pack the phycocyanobilin (PCB). Ring D of the chromophores is further stabilized by close interactions with ApcB from the adjacent monomer. The combined contributions from both subunits render the conjugated rings B, C and D of the PCB in ApcD almost perfectly coplanar. Together with mutagenesis data, it is proposed that the enhanced planarity effectively extends the conjugation system of PCB and leads to the redshifted absorption (λmax = 669 nm) and fluorescence emission (679 nm) of the ApcD chromophore in AP-B, thereby enabling highly efficient energy transfer from the phycobilisome core to the reaction centres.


Subject(s)
Phycocyanin/chemistry , Synechocystis/chemistry , Binding Sites , Circular Dichroism , Crystallography, X-Ray , Escherichia coli/genetics , Fluorescence , Models, Molecular , Phycobilisomes/chemistry , Phycocyanin/genetics , Phycocyanin/isolation & purification , Phycocyanin/metabolism , Protein Conformation , Synechocystis/genetics
6.
Photochem Photobiol Sci ; 13(5): 757-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24604419

ABSTRACT

Cyanobacteriochromes are a structurally and spectrally highly diverse class of phytochrome-related photosensory biliproteins. They contain one or more GAF domains that bind phycocyanobilin (PCB) autocatalytically; some of these proteins are also capable of further modifying PCB to phycoviolobilin or rubins. We tested the chromophorylation with the non-photochromic phycoerythrobilin (PEB) of 16 cyanobacteriochrome GAFs from Nostoc sp. PCC 7120, of Slr1393 from Synechocystis sp. PCC 6803, and of Tlr0911 from Thermosynechococcus elongatus BP-1. Nine GAFs could be autocatalytically chromophorylated in vivo/in E. coli with PEB, resulting in highly fluorescent biliproteins with brightness comparable to that of fluorescent proteins like GFP. In several GAFs, PEB was concomitantly converted to phycourobilin (PUB) during binding. This not only shifted the spectra, but also increased the Stokes shift. The chromophorylated GAFs could be oligomerized further by attaching a GCN4 leucine zipper domain, thereby enhancing the absorbance and fluorescence of the complexes. The presence of both PEB and PUB makes these oligomeric GAF-"bundles" interesting models for energy transfer akin to the antenna complexes found in cyanobacterial phycobilisomes. The thermal and photochemical stability and their strong brightness make these constructs promising orange fluorescent biomarkers.


Subject(s)
Cyanobacteria/metabolism , Luminescent Proteins/metabolism , Phycobilins/metabolism , Phycoerythrin/metabolism , Urobilin/analogs & derivatives , Cyanobacteria/chemistry , Luminescent Proteins/chemistry , Photochemical Processes , Phycobilins/chemistry , Phycoerythrin/chemistry , Temperature , Urobilin/chemistry , Urobilin/metabolism
7.
Gene ; 511(1): 88-95, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-22982227

ABSTRACT

The phycocyanin lyase CpcT1 (encoded by gene all5339) and lyase CpcS1 (encoded by gene alr0617) are capable of catalyzing the phycocyanobilin (PCB) covalently bound to the different sites of phycocyanin's and phycoerythrocyanin's ß subunits, respectively. Lyase CpcS1, whose catalytic mechanism had been researched clearly, participates in the covalent coupling of phycobilin and apoprotein in the form of chaperone, and its important amino acids have been confirmed. In order to identify the functional amino acid residues of CpcT1, chemical modification was conducted to arginine, histidine, tryptophan, lysine and amino acid carboxyl of CpcT1. The results indicated that the catalytic activity of the CpcT1 was changed. After the modification of arginine, tryptophan and histidine, site-directed mutations were performed to those highly conserved amino acids which were selected by means of homologous comparison. The mutated lyase, apoprotein and the enzymes that synthesize the phycobilins were recombined in Escherichia coli (E. coli) and in vitro, yielding chromoproteins, which were detected by fluorescence and UV absorption spectrometry. The spectra were compared with that of the chromoprotein catalyzed by wild type lyase CpcT1, achieving relative specific activities of the various mutants. Meanwhile, the mutants were expressed in E. coli, and then circular dichroism structure of near-UV region was determined. The results demonstrated that H33F, W175S, R97A, C137S and C116S influence the catalytic activity of CpcT1. Being different from wild CpcT1, a great deal of α helix was involved in the structure of circular dichroism of R97A and W13S. CpcT1 or its mutants and the enzymes that synthesize the phycobilins, were reconstituted in E. coli and detected by spectra to check the bounding of lyases and PCB. The results of spectra and SDS-PAGE confirm that CpcT1 and its mutants cannot bind phycobilin, differing from the catalytic mechanism of CpcS1.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lyases/genetics , Lyases/metabolism , Nostoc/enzymology , Nostoc/genetics , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/chemistry , Bacterial Proteins/chemistry , Catalytic Domain/genetics , Circular Dichroism , Genes, Bacterial , Lyases/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , Phycobilins/metabolism , Phycocyanin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrometry, Fluorescence , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...