Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0263644, 2022.
Article in English | MEDLINE | ID: mdl-35576222

ABSTRACT

In recent years, studies on malware analysis have noticeably increased in the cybersecurity community. Most recent studies concentrate on malware classification and detection or malicious patterns identification, but as to malware activity, it still relies heavily on manual analysis for high-level semantic descriptions. We develop a sequence-to-sequence (seq2seq) neural network, called TagSeq, to investigate a sequence of Windows API calls recorded from malware execution, and produce tags to label their malicious behavior. We propose embedding modules to transform Windows API function parameters, registry, filenames, and URLs into low-dimension vectors, while still preserving the closeness property. Moreover, we utilize an attention mechanism to capture the relations between generated tags and certain API invocation calls. Results show that the most possible malicious actions are identified by TagSeq. Examples and a case study demonstrate that the proposed embedding modules preserve semantic-physical relations and that the predicted tags reflect malicious intentions. We believe this work is suitable as a tool to help security analysts recognize malicious behavior and intent with easy-to-understand tags.


Subject(s)
Computer Security , Neural Networks, Computer , Records , Registries , Semantics
2.
J Med Syst ; 35(3): 391-407, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20703551

ABSTRACT

Many existing healthcare information systems are composed of a number of heterogeneous systems and face the important issue of system scalability. This paper first describes the comprehensive healthcare information systems used in National Taiwan University Hospital (NTUH) and then presents a service-oriented architecture (SOA)-based healthcare information system (HIS) based on the service standard HL7. The proposed architecture focuses on system scalability, in terms of both hardware and software. Moreover, we describe how scalability is implemented in rightsizing, service groups, databases, and hardware scalability. Although SOA-based systems sometimes display poor performance, through a performance evaluation of our HIS based on SOA, the average response time for outpatient, inpatient, and emergency HL7Central systems are 0.035, 0.04, and 0.036 s, respectively. The outpatient, inpatient, and emergency WebUI average response times are 0.79, 1.25, and 0.82 s. The scalability of the rightsizing project and our evaluation results show that the SOA HIS we propose provides evidence that SOA can provide system scalability and sustainability in a highly demanding healthcare information system.


Subject(s)
Hospital Information Systems/organization & administration , Medical Informatics Applications , Databases, Factual , Emergency Service, Hospital/organization & administration , Hospitals, University , Internet , Medical Records Systems, Computerized , Software , Taiwan , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...