Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876192

ABSTRACT

BACKGROUND: Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW: This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW: NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.

2.
Chin J Cancer Res ; 36(2): 195-214, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38751441

ABSTRACT

Hepatocellular carcinoma (HCC) is considered the fifth most prevalent cancer among all types of cancers and has the third most morbidity value. It has the most frequent duplication time and a high recurrence rate. Recently, the most unique technique used is liquid biopsies, which carry many markers; the most prominent is circulating tumor DNA (ctDNA). Varied methods are used to investigate ctDNA, including various forms of polymerase chain reaction (PCR) [emulsion PCR (ePCR), digital PCR (dPCR), and bead, emulsion, amplification, magnetic (BEAMing) PCR]. Hence ctDNA is being recognized as a potential biomarker that permits early cancer detection, treatment monitoring, and predictive data on tumor burden are subjective to therapy or surgery. Numerous ctDNA biomarkers have been investigated based on their alterations such as 1) single nucleotide variations (either insertion or deletion of a nucleotide) markers including TP53, KRAS, and CCND1; 2) copy number variations which include markers such as CDK6, EFGR, MYC and BRAF; 3) DNA methylation (RASSF1A, SEPT9, KMT2C and CCNA2); 4) homozygous mutation includes ctDNA markers as CDKN2A, AXIN1; and 5) gain or loss of function of the genes, particularly for HCC. Various researchers have conducted many studies and gotten fruitful results. Still, there are some drawbacks to ctDNA namely low quantity, fragment heterogeneity, less stability, limited mutant copies and standards, and differential sensitivity. However, plenty of investigations demonstrate ctDNA's significance as a polyvalent biomarker for cancer and can be viewed as a future diagnostic, prognostic and therapeutic agent. This article overviews many conditions in genetic changes linked to the onset and development of HCC, such as dysregulated signaling pathways, somatic mutations, single-nucleotide polymorphisms, and genomic instability. Additionally, efforts are also made to develop treatments for HCC that are molecularly targeted and to unravel some of the genetic pathways that facilitate its early identification.

3.
Mol Biotechnol ; 66(5): 1051-1061, 2024 May.
Article in English | MEDLINE | ID: mdl-38129673

ABSTRACT

N6-methyladenosine (m6A) is the most common posttranscriptional RNA modification and plays significant roles in physiological and pathological progression. Here, we probed the functions and mechanism of the m6A reader YTH domain containing 2 (YTHDC2) in Lung Adenocarcinoma (LUAD) tumorigenesis. Levels of genes and proteins of YTHDC2 and Mitochondrial ribosomal protein L7/L12 (MRPL12) were assayed by quantitative real-time polymerase chain reaction, western blotting and Immunohistochemistry (IHC) analyses. In vitro analysis was conducted using 5-ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. In vivo assay was performed by using the mouse lung adenocarcinoma model. The methylated RNA immunoprecipitation (MeRIP) assay was used to detect the m6A modification profile of MRPL12 mRNA. YTHDC2 was lowly expressed in lung adenocarcinoma tissues and cells. Overexpression of YTHDC2 suppressed the proliferation, invasion and migration of lung adenocarcinoma cells, but induced cell apoptosis. As expected, forced expression of YTHDC2 hindered lung adenocarcinoma tumor growth in vivo. Mechanistically, YTHDC2 preferentially bound to m6A-modified MRPL12 mRNA and destabilized its expression. MRPL12 was highly expressed in lung adenocarcinoma tissues and cells, and MRPL12 silencing repressed the growth and mobility of lung adenocarcinoma cells. Moreover, MRPL12 upregulation attenuated the anticancer activity of YTHDC2 in lung adenocarcinoma cells. In vivo assay also showed YTHDC2 suppressed tumor growth in the lung adenocarcinoma mouse model via downregulating MRPL12. The m6A reader YTHDC2 repressed lung adenocarcinoma tumorigenesis by destabilizing MRPL12 in an m6A-dependent manner.


Subject(s)
Adenocarcinoma of Lung , Adenosine , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Humans , Animals , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Cell Line, Tumor , Carcinogenesis/genetics , Apoptosis , Cell Movement , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Helicases/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mice, Nude
4.
Biomaterials ; 301: 122239, 2023 10.
Article in English | MEDLINE | ID: mdl-37451001

ABSTRACT

Medical adhesives have emerged as potential materials for sealing, hemostasis and wound repairing in modern clinical surgery. However, most of existing medical adhesives are still far away from the clinical requirements for simultaneously meeting desirable tissue adhesion, safety, biodegradability, anti-swelling property, and convenient operability. Here, we present an entirely new kind of peptide-based underwater adhesives, which are constructed via cross-linked supramolecular copolymerization between cationic short peptides and glycyrrhizic acid (GA) in an aqueous solution. We revealed the unique molecular mechanism of the peptide/GA supramolecular polymers and underlined the importance of arginine residues in the enhancement of the bulk cohesion of the peptide/GA adhesive. We thus concluded a design guideline that the peptide sequence has to be encoded with multiple arginine termini and hydrophobic residues. The resulting adhesives exhibited effective tissue adhesion, robust cohesion, low cell cytotoxicity, acceptable hemocompatibility, inappreciable inflammation response, appropriate biodegradability, and excellent anti-swelling property. More attractively, the dried peptide/GA powder was able to rapidly self-gel into adhesives by absorbing water, suggesting conveniently clinical operability. Animal experiments showed that the peptide/GA supramolecular polymers could be utilized as reliable medical adhesives for dural sealing and repairing.


Subject(s)
Adhesives , Glycyrrhizic Acid , Animals , Adhesives/chemistry , Tissue Adhesions , Water/chemistry , Polymers/chemistry , Peptides/chemistry
5.
J Med Chem ; 66(13): 9095-9119, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37399505

ABSTRACT

The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.


Subject(s)
MTOR Inhibitors , Sirolimus , Mice , Animals , Syndrome , Central Nervous System/metabolism , Brain/metabolism , TOR Serine-Threonine Kinases , Adenosine Triphosphate
6.
Adv Healthc Mater ; 12(20): e2203301, 2023 08.
Article in English | MEDLINE | ID: mdl-36960795

ABSTRACT

The fusion of protein science and peptide science opens up new frontiers in creating innovative biomaterials. Herein, a new kind of adhesive soft materials based on a natural occurring plant protein and short peptides via a simple co-assembly route are explored. The hydrophobic zein is supercharged by sodium dodecyl sulfate to form a stable protein colloid, which is intended to interact with charge-complementary short peptides via multivalent ionic and hydrogen bonds, forming adhesive materials at macroscopic level. The adhesion performance of the resulting soft materials can be fine-manipulated by customizing the peptide sequences. The adhesive materials can resist over 78 cmH2 O of bursting pressure, which is high enough to meet the sealing requirements of dural defect. Dural sealing and repairing capability of the protein-peptide biomaterials are further identified in rat and rabbit models. In vitro and in vivo assays demonstrate that the protein-peptide adhesive shows excellent anti-swelling property, low cell cytotoxicity, hemocompatibility, and inflammation response. In particular, the protein-peptide supramolecular biomaterials can in vivo dissociate and degrade within two weeks, which can well match with the time-window of the dural repairing. This work underscores the versatility and availability of the supramolecular toolbox in the easy-to-implement fabrication of protein-peptide biomaterials.


Subject(s)
Peptides , Plant Proteins , Rats , Animals , Rabbits , Tissue Adhesions , Peptides/chemistry , Biocompatible Materials/chemistry , Polymers/chemistry
7.
J Med Chem ; 63(3): 1068-1083, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31955578

ABSTRACT

Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.


Subject(s)
Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Seizures/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/therapeutic use , Animals , Anticonvulsants/metabolism , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Binding Sites , Brain/drug effects , Drug Discovery , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Thiazoles/metabolism , Thiazoles/pharmacokinetics , Tuberous Sclerosis Complex 1 Protein/genetics
8.
J Med Chem ; 61(7): 2837-2864, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29562737

ABSTRACT

In breast cancer, estrogen receptor alpha (ERα) positive cancer accounts for approximately 74% of all diagnoses, and in these settings, it is a primary driver of cell proliferation. Treatment of ERα positive breast cancer has long relied on endocrine therapies such as selective estrogen receptor modulators, aromatase inhibitors, and selective estrogen receptor degraders (SERDs). The steroid-based anti-estrogen fulvestrant (5), the only approved SERD, is effective in patients who have not previously been treated with endocrine therapy as well as in patients who have progressed after receiving other endocrine therapies. Its efficacy, however, may be limited due to its poor physicochemical properties. We describe the design and synthesis of a series of potent benzothiophene-containing compounds that exhibit oral bioavailability and preclinical activity as SERDs. This article culminates in the identification of LSZ102 (10), a compound in clinical development for the treatment of ERα positive breast cancer.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Estrogen Receptor alpha/drug effects , Selective Estrogen Receptor Modulators/chemical synthesis , Selective Estrogen Receptor Modulators/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Biological Availability , Drug Design , Drug Discovery , Female , Humans , MCF-7 Cells , Mice , Mice, Nude , Rats , Rats, Sprague-Dawley , Rats, Wistar , Selective Estrogen Receptor Modulators/pharmacokinetics , Thiophenes/chemistry , Thiophenes/pharmacokinetics , Xenograft Model Antitumor Assays
9.
J Med Chem ; 60(7): 2790-2818, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28296398

ABSTRACT

Tetrahydroisoquinoline 40 has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ 40 and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ 40 in a MCF-7 human breast cancer xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast/drug effects , Estrogen Receptor alpha/antagonists & inhibitors , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/therapeutic use , Acrylates/chemistry , Acrylates/pharmacokinetics , Acrylates/pharmacology , Acrylates/therapeutic use , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Dogs , Drug Discovery , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Mice, Inbred C57BL , Molecular Docking Simulation , Proteolysis/drug effects , Tetrahydroisoquinolines/pharmacokinetics , Tetrahydroisoquinolines/pharmacology
11.
J Med Chem ; 52(13): 3954-68, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19469545

ABSTRACT

Abnormal activation of the Hedgehog (Hh) signaling pathway has been linked to several types of human cancers, and the development of small-molecule inhibitors of this pathway represents a promising route toward novel anticancer therapeutics. A cell-based screen performed in our laboratories identified a new class of Hh pathway inhibitors, 1-amino-4-benzylphthalazines, that act via antagonism of the Smoothened receptor. A variety of analogues were synthesized and their structure-activity relationships determined. This optimization resulted in the discovery of high affinity Smoothened antagonists, one of which was further profiled in vivo. This compound displayed a good pharmacokinetic profile and also afforded tumor regression in a genetic mouse model of medulloblastoma.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Phthalazines/pharmacokinetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/drug therapy , Mice , Neoplasms, Experimental/drug therapy , Phthalazines/chemistry , Phthalazines/therapeutic use , Signal Transduction/drug effects , Smoothened Receptor , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 19(2): 328-31, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19091559

ABSTRACT

Ortho-biphenyl carboxamides, originally prepared as inhibitors of microsomal triglyceride transfer protein (MTP) have been identified as novel inhibitors of the Hedgehog signaling pathway. Structure-activity relationship studies for this class of compounds reduced MTP inhibitory activity and led to low nanomolar Hedgehog inhibitors. Binding assays revealed that the compounds act as antagonists of Smoothened and show cross-reactivity for both the human and mouse receptor.


Subject(s)
Amides/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Amides/chemistry , Animals , Carrier Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Humans , Mice , Smoothened Receptor , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 18(6): 1840-4, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18295483

ABSTRACT

Based on a pharmacophore hypothesis substituted tetramic and tetronic acid 3-carboxamides as well as dihydropyridin-2-one-3-carboxamides were investigated as inhibitors of undecaprenyl pyrophosphate synthase (UPPS) for use as novel antimicrobial agents. Synthesis and structure-activity relationship patterns for this class of compounds are discussed. Selectivity data and antibacterial activities for selected compounds are provided.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Amides/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Furans/pharmacology , Pyrrolidinones/pharmacology , Streptococcus pneumoniae/drug effects , Alkyl and Aryl Transferases/metabolism , Amides/chemical synthesis , Cyclization , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Furans/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Polyisoprenyl Phosphates/metabolism , Protein Conformation , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Sesquiterpenes/metabolism , Streptococcus pneumoniae/growth & development , Structure-Activity Relationship
14.
Bioorg Med Chem ; 16(3): 1359-75, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17983756

ABSTRACT

A series of novel, potent quinolinyl-derived imidazo[1,5-a]pyrazine IGF-IR (IGF-1R) inhibitors--most notably, cis-3-(3-azetidin-1-ylmethylcyclobutyl)-1-(2-phenylquinolin-7-yl)imidazo[1,5-a]pyrazin-8-ylamine (AQIP)--is described. Synthetic details, structure-activity relationships, and in vitro biological activity are reported for the series. Key in vitro and in vivo biological results for AQIP are reported, including: inhibition of ligand-stimulated autophosphorylation of IGF-IR and downstream pathways in 3T3/huIGFIR cells; inhibition of proliferation and induction of DNA fragmentation in human tumor cell lines; a pharmacokinetic profile suitable for once-per-day oral dosing; antitumor activity in a 3T3/huIGFIR xenograft model; and effects on insulin and glucose levels.


Subject(s)
Imidazoles/chemical synthesis , Imidazoles/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Quinolines/chemistry , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Blood Glucose/metabolism , Cell Line , Dogs , Female , Humans , Imidazoles/chemistry , Insulin/blood , Ligands , Mice , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrazines/chemistry , Rats , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...