Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Obstet Gynaecol ; 43(2): 2266646, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37921106

ABSTRACT

BACKGROUND: Previous studies evaluating the relationship between blood manganese (Mn) level and gestational diabetes mellitus (GDM) in pregnant women showed inconsistent results. A systematic review and meta-analysis was therefore performed to investigate the above association. METHODS: Relevant observational studies were obtained by search of electronic databases including Medline, Embase, Cochrane Library and Web of Science from database inception to 10 March 2023. Two authors independently performed database search, literature identification and data extraction. A randomised-effects model was selected to pool the data by incorporating the influence of potential heterogeneity. Subgroup analysis was performed to evaluate the influence of study characteristics on the results of the meta-analysis. RESULTS: Six datasets from five observational studies, involving 91,249 pregnant women were included in the meta-analysis. Among the participants, 3597 (3.9%) were diagnosed as GDM. Overall, pooled results showed that a high blood level of Mn was associated with a higher risk of GDM (compared between women with highest versus lowest category blood Mn, odds ratio: 1.31, 95% confidence interval: 1.19-1.44, p < .001) with no significant heterogeneity (p for Cochrane Q-test = 0.93, I2 = 0%). Subgroup analyses according to study design, mean maternal age, matrix or methods for measuring blood Mn, and the incidence of GDM also showed consistent results (p for subgroup difference all >.05). CONCLUSIONS: Results of the meta-analysis suggest that a high blood Mn level may be a risk factor of GDM in pregnant women. Studies are needed to determine the underlying mechanisms, and to investigate if the relationship between blood Mn level and GDM is dose-dependent.


Changes of blood manganese (Mn) have been suggested to be involved in the pathogenesis of diabetes. However, the relationship between blood Mn level and gestational diabetes mellitus (GDM) in pregnant women remains undetermined. Our study represents the first systematic review and meta-analysis to investigate the potential association between blood Mn concentration and the risk of GDM. In this meta-analysis, we pooled the results of six datasets from five observational and showed that compared to pregnant women with the lowest category of blood Mn level, those with the highest category of blood Mn level were associated with a higher risk of GDM. These results suggest that a high blood concentration of Mn in pregnant women may be a risk factor of GDM.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Manganese , Risk Factors , Maternal Age , Odds Ratio
2.
Clin Case Rep ; 6(10): 1989-1993, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30349713

ABSTRACT

Twelve days after birth, the child was admitted to hospital because of "poor response, lethargy, and poor appetite for 6 days" and developed into coma immediately. The ventilator is required. The urine had significant maple syrup odor. After different diagnosis, she was diagnosed with classical maple syrup urine disease.

3.
Exp Ther Med ; 15(6): 5001-5006, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29805523

ABSTRACT

The incidence of congenital hypothyroidism (CH) in newborn infants ranges from 1 in 3,000 to 1 in 4,000. Previous studies have indicated the neuroprotective role of microRNA (miR)-124-3p, however the expression and role of miR-124-3p in CH remain unclear. Therefore, the present study was performed to investigate the role and precise molecular mechanism of miR-124-3p in CH. Propylthiouracil (50 mg/day) was injected into the stomach of pregnant rats from gestational day 15 until parturition in order to establish a thyroid hypofunction model. Newborn rats were divided into the following four groups: The control group; the thyroid hypofunction group; the miR-124-3p mimic group; and the miR-124-3p negative control group. Reverse transcription-quantitative polymerase chain reaction indicated that miR-124-3p was significantly decreased in the hippocampus of the thyroid hypofunction group compared with the control group. Bioinformatics software was used to predict mRNA targets recognized by miR-124-3p and the programmed cell death protein 6 (PDCD6) 3' untranslated region (UTR) was demonstrated to exhibit the seed sequence of miR-124-3p. The interaction between miRNA-124-3p and PDCD6 was then verified using a dual-luciferase reporter assay system. PDCD6 expression was significantly increased in the hippocampus of rats with CH compared with the control group. Flow cytometry was performed to investigate the effects of miR-124-3p on neuronal cell apoptosis and the results indicated that the apoptosis rate in the thyroid hypofunction group was significantly increased compared with the control group; this increase was reversed by transfection with miR-124-3p mimics. Western blot analysis was used to detect the levels of cleaved poly [ADP-ribose] polymerase (PARP), full-length PARP, caspase-3, B cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) proteins. The results indicated that the expression of cleaved PARP, caspase-3 and Bax protein were significantly increased and the expression of full-length PARP and Bcl-2 protein was significantly decreased compared with the control group. These effects were reversed by miRNA-124-3p mimic transfection. Taken together, the results of the present study demonstrate that miRNA-124-3p serves a protective role in CH via targeting PDCD6.

SELECTION OF CITATIONS
SEARCH DETAIL
...