Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 25: 101007, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779617

ABSTRACT

Zirconia faces challenges in dental implant applications due to its inherent biological inertness, which compromises osseointegration, a critical factor for the long-term success of implants that rely heavily on specific cell adhesion and enhanced osteogenic activity. Here, we fabricated a dual-functional coating that incorporates strontium ions, aimed at enhancing osteogenic activity, along with an integrin-targeting sequence to improve cell adhesion by mussel byssus-inspired surface chemistry. The results indicated that although the integrin-targeting sequence at the interface solely enhances osteoblast adhesion without directly increasing osteogenic activity, its synergistic interaction with the continuously released strontium ions from the coating, as compared to the release of strontium ions alone, significantly enhances the overall osteogenic effect. More importantly, compared to traditional polydopamine surface chemistry, the coating surface is enriched with amino groups capable of undergoing various chemical reactions and exhibits enhanced stability and aesthetic appeal. Therefore, the synergistic interplay between strontium and the functionally customizable surface offers considerable potential to improve the success of zirconia implantation.

2.
Article in English | MEDLINE | ID: mdl-35010806

ABSTRACT

Suaeda salsa (S. salsa) is an important ecological barrier and tourism resource in coastal wetland resources, and assessing changes in its health is beneficial for protecting the ecological health of wetlands and increasing finances. The aim was to explore improvements in the degradation of S. salsa communities in the Liao River Estuary National Nature Reserve since a wetland restoration project was carried out in Panjin, Liaoning Province, China, in 2015. In this study, landscape changes in the reserve were assessed based on Sentinel-2 images classification results from 2016 to 2019. A pressure-state-response framework was constructed to assess the annual degradation of S. salsa communities within the wetlands. The assessment results show that the area of S. salsa communities and water bodies decreased annually from 2016 to 2019, and the increased degradation indicators indicate a state of continued degradation. The area of types such as aquaculture ponds and Phragmites australis communities did not change much, while the estuarine mudflats increased year by year. The causes of S. salsa community degradation include anthropogenic impacts from abandoned aquaculture ponds and sluice control systems but also natural impacts from changes in the tidal amplitude and soil properties of the mudflats. The results also indicate that the living conditions of S. salsa in the Liao River estuary wetlands are poor and that anthropogenic disturbance is necessary to restore the original vegetation abundance.


Subject(s)
Chenopodiaceae , Wetlands , Anthropogenic Effects , China , Ecosystem , Estuaries , Rivers , Soil
3.
Article in English | MEDLINE | ID: mdl-28009805

ABSTRACT

Urban waterlogging seriously threatens the safety of urban residents and properties. Wargame simulation research on resident emergency evacuation from waterlogged areas can determine the effectiveness of emergency response plans for high risk events at low cost. Based on wargame theory and emergency evacuation plans, we used a wargame exercise method, incorporating qualitative and quantitative aspects, to build an urban waterlogging disaster emergency shelter using a wargame exercise and evaluation model. The simulation was empirically tested in Daoli District of Harbin. The results showed that the wargame simulation scored 96.40 points, evaluated as good. From the simulation results, wargame simulation of urban waterlogging emergency procedures for disaster response can improve the flexibility and capacity for command, management and decision-making in emergency management departments.


Subject(s)
Disaster Planning/methods , Disasters , Models, Theoretical , Urban Population , Decision Making , Emergencies , Emergency Shelter , Humans
4.
Int J Environ Res Public Health ; 11(10): 9964-80, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25264676

ABSTRACT

With the acceleration of urbanization, waterlogging has become an increasingly serious issue. Road waterlogging has a great influence on residents' travel and traffic safety. Thus, evaluation of residents' travel difficulties caused by rainstorm waterlogging disasters is of great significance for their travel safety and emergency shelter needs. This study investigated urban rainstorm waterlogging disasters, evaluating the impact of the evolution of such disasters' evolution on residents' evacuation, using Daoli District (Harbin, China) as the research demonstration area to perform empirical research using a combination of scenario simulations, questionnaires, GIS spatial technology analysis and a hydrodynamics method to establish an urban rainstorm waterlogging numerical simulation model. The results show that under the conditions of a 10-year frequency rainstorm, there are three street sections in the study area with a high difficulty index, five street sections with medium difficulty index and the index is low at other districts, while under the conditions of a 50-year frequency rainstorm, there are five street sections with a high difficulty index, nine street sections with a medium difficulty index and the other districts all have a low index. These research results can help set the foundation for further small-scale urban rainstorm waterlogging disaster scenario simulations and emergency shelter planning as well as forecasting and warning, and provide a brand-new thought and research method for research on residents' safe travel.


Subject(s)
Cities/statistics & numerical data , Floods/statistics & numerical data , Models, Theoretical , Urban Population/statistics & numerical data , China , Disasters , Emergency Shelter , Geographic Information Systems , Humans , Hydrodynamics , Surveys and Questionnaires , Transportation/statistics & numerical data
5.
Int J Environ Res Public Health ; 9(6): 2057-74, 2012 06.
Article in English | MEDLINE | ID: mdl-22829790

ABSTRACT

In this study, an experiment was performed to assess the trip difficulty for urban residents of different age groups walking in various depths of water, and the data were corroborated with the real urban rainstorm waterlogging scenarios in downtown (Daoli district) Ha-Erbin (China). Mathematical models of urban rainstorm waterlogging were constructed using scenario simulation methods, aided by the GIS spatial analysis technology and hydrodynamic analysis of the waterway systems in the study area. Then these models were used to evaluate the impact of waterlogging on the safety of residents walking in the affected area. Results are summarized as: (1) for an urban rainstorm waterlogging scenario reoccurring once every 10 years, three grid regions would have waterlogging above 0.5 m moving at a velocity of 1.5 m/s. Under this scenario, waterlogging would accumulate on traffic roads only in small areas, affecting the safety and mobility of residents walking in the neighborhood; (2) for an urban rainstorm waterlogging scenario reoccurring once every 20 years, 13 grids experienced the same waterlogging situation affecting a larger area of the city; (3) for an urban rainstorm waterlogging scenario reoccurring once every 50 years, 86 grid regions were affected (waterlogging above 0.5 m moving at 1.5 m/s), and those areas would become impassable for residents.


Subject(s)
Cities/statistics & numerical data , Floods/statistics & numerical data , Models, Theoretical , Urban Population/statistics & numerical data , Walking/statistics & numerical data , Adolescent , Child , China , Geographic Information Systems , Humans , Transportation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...