Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 12500-12508, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38417141

ABSTRACT

Lithium-sulfur batteries (LSBs) are promising next-generation energy storage systems because of their high energy densities and high theoretical specific capacities. However, most catalysts in the LSBs are based on carbon materials, which can only improve the conductivity and are unable to accelerate lithium-ion transport. Therefore, it would be worthwhile to develop a catalytic electrode exhibiting both ion and electron conductivity. Herein, a triple-phase interface using lithium lanthanum titanate/carbon (LLTO/C) nanofibers to construct ion/electron co-conductive materials was used to afford enhanced adsorption of lithium polysulfides (LiPSs), high conductivity, and fast ion transport in working LSBs. The triple-phase interface accelerates the kinetics of the soluble LiPSs and promotes uniform Li2S precipitation/dissolution. Additionally, the LLTO/C nanofibers decrease the reaction barrier of the LiPSs, significantly improving the conversion of LiPSs to Li2S and promoting rapid conversion. Specifically, the LLTO promotes ion transport owing to its high ionic conductivity, and the carbon enhances the conductivity to improve the utilization rate of sulfur. Therefore, the LSBs with LLTO/C functional separators deliver stable life cycles, high rates, and good electrocatalytic activities. This strategy is greatly important for designing ion/electron conductivity and interface engineering, providing novel insight for the development of the LSBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...